Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph

利用 计算机科学 估价(财务) 数据科学 知识图 新兴技术 图形 投资(军事) 人工智能 业务 财务 理论计算机科学 政治学 计算机安全 政治 法学
作者
MyoungHoon Lee,Suhyeon Kim,Hangyeol Kim,Junghye Lee
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:180: 121718-121718 被引量:20
标识
DOI:10.1016/j.techfore.2022.121718
摘要

To capture emerging technologies in the fast-changing technology market, use of information concerning new technology-based firms (NTBFs) is strongly encouraged, in addition to the information about the technology itself. Especially, NTBFs rapidly respond to technological change, and their investment information is a significant criterion of technology valuation. Therefore, this study proposes a new technology opportunity discovery (TOD) framework that exploits text mining by deep learning and a knowledge graph (KG) by using three data sources: technology, NTBF, and investor data. First, a technology-classification model was developed using technical text data acquired using Doc2vec and logistic regression, and then this model assigned highly-relevant technology fields to NTBFs using NTBFs' investor relation text data. Next, a KG that considers technology, NTBF, and NTBF's investor was constructed to represent their relations for TOD by using the results of previous steps. Lastly, considering inter-connectivities of such factors, a TOD index that measures the potential of technologies was proposed. The accuracy and validity of the methods were demonstrated empirically, and an evaluation of emerging technologies identified by the analysis was provided. Our framework will be of great significance as a useful alternative to provide new insights for emerging technologies in the industry and market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助pink采纳,获得10
1秒前
1秒前
阳光以筠完成签到,获得积分20
2秒前
活泼舞蹈发布了新的文献求助10
3秒前
4秒前
上官若男应助生生不息采纳,获得10
4秒前
柿饼发布了新的文献求助10
4秒前
翊瑾发布了新的文献求助10
5秒前
迷路安雁完成签到,获得积分10
6秒前
7秒前
冰叶点点完成签到,获得积分10
8秒前
范先生发布了新的文献求助10
8秒前
柠曦完成签到,获得积分10
9秒前
11秒前
丘比特应助元水云采纳,获得30
11秒前
12秒前
LUZIYI完成签到,获得积分20
12秒前
12秒前
13秒前
华仔应助咕咕咕冒泡采纳,获得10
14秒前
14秒前
Owen应助yiyiyi采纳,获得10
14秒前
臧佳莹完成签到,获得积分20
14秒前
Ava应助有魅力的哈密瓜采纳,获得10
15秒前
16秒前
16秒前
生生不息发布了新的文献求助10
17秒前
跳跃仙人掌应助HaojunWang采纳,获得10
17秒前
SongAce完成签到,获得积分20
17秒前
19秒前
坦率若魔完成签到,获得积分10
19秒前
19秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721