Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow

抗凝剂 抗凝治疗 血栓 计算机科学 养生 人工智能 医学 凝血病 重症监护医学 机器学习 外科
作者
Anass Bouchnita,Patrice Nony,Jean-Pierre Llored,Vitaly Volpert
出处
期刊:Mathematical biosciences [Elsevier]
卷期号:349: 108830-108830 被引量:5
标识
DOI:10.1016/j.mbs.2022.108830
摘要

Anticoagulant drugs are commonly prescribed to prevent hypercoagulable states in patients with venous thromboembolism. The choice of the most efficient anticoagulant and the appropriate dosage regimen remain a complex problem because of the intersubject variability in the coagulation kinetics and the effect of blood flow. The rapid assessment of the patient-specific response to anticoagulant regimens would assist clinical decision-making and ensure efficient management of coagulopathy. In this work, we introduce a novel approach that combines computational modeling and deep learning for the fast prediction of the patient-specific response to anticoagulant regimens. We extend a previously developed model to explore the spatio-temporal dynamics of thrombin generation and thrombus formation under anticoagulation therapy. Using a 1D version of the model, we generate a dataset of thrombus formation for thousands of virtual patients by varying key parameters in their physiological range. We use this dataset to train an artificial neural network (ANN) and we use it to predict patient's response to anticoagulant therapy under flow. The algorithm is available and can be accessed through the link: https://github.com/MPS7/ML_coag. It yields an accuracy of 96 % which suggests that its usefulness can be assessed in a randomized clinical trial. The exploration of the model dynamics explains the decisions taken by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZzrWKZ完成签到 ,获得积分10
刚刚
yy完成签到,获得积分20
刚刚
杨家欢完成签到,获得积分10
2秒前
俏皮的冰绿完成签到,获得积分10
2秒前
彭于晏应助xgx984采纳,获得10
3秒前
直率闭月完成签到,获得积分10
4秒前
打打应助11111采纳,获得10
5秒前
5秒前
5秒前
随风飘荡121完成签到,获得积分10
6秒前
6秒前
吐泡泡的奇异果完成签到,获得积分10
7秒前
小马甲应助丁的采纳,获得10
7秒前
7秒前
内向的飞松完成签到,获得积分10
9秒前
zzqx发布了新的文献求助10
10秒前
jscr完成签到,获得积分10
12秒前
666发布了新的文献求助10
12秒前
烟花应助岩追研采纳,获得10
13秒前
小蘑菇应助yeeee采纳,获得10
13秒前
花痴的梦蕊完成签到,获得积分10
13秒前
飞飞发布了新的文献求助10
14秒前
14秒前
首席或雪月完成签到,获得积分10
14秒前
15秒前
胖飞飞完成签到,获得积分10
16秒前
lkk183发布了新的文献求助80
18秒前
皮皮发布了新的文献求助10
21秒前
22秒前
天天快乐应助靓丽忆彤采纳,获得10
22秒前
老王完成签到 ,获得积分10
24秒前
丘比特应助无限的可乐采纳,获得10
25秒前
11111发布了新的文献求助10
27秒前
1_0完成签到 ,获得积分10
28秒前
悠悠完成签到 ,获得积分10
29秒前
薰硝壤应助huyang采纳,获得20
29秒前
上官若男应助CPUPPer采纳,获得10
30秒前
Xenia应助贪玩若蕊采纳,获得10
30秒前
30秒前
pegasus0802完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314