Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow

抗凝剂 抗凝治疗 血栓 计算机科学 养生 人工智能 医学 凝血病 重症监护医学 机器学习 外科
作者
Anass Bouchnita,Patrice Nony,Jean-Pierre Llored,Vitaly Volpert
出处
期刊:Mathematical biosciences [Elsevier BV]
卷期号:349: 108830-108830 被引量:5
标识
DOI:10.1016/j.mbs.2022.108830
摘要

Anticoagulant drugs are commonly prescribed to prevent hypercoagulable states in patients with venous thromboembolism. The choice of the most efficient anticoagulant and the appropriate dosage regimen remain a complex problem because of the intersubject variability in the coagulation kinetics and the effect of blood flow. The rapid assessment of the patient-specific response to anticoagulant regimens would assist clinical decision-making and ensure efficient management of coagulopathy. In this work, we introduce a novel approach that combines computational modeling and deep learning for the fast prediction of the patient-specific response to anticoagulant regimens. We extend a previously developed model to explore the spatio-temporal dynamics of thrombin generation and thrombus formation under anticoagulation therapy. Using a 1D version of the model, we generate a dataset of thrombus formation for thousands of virtual patients by varying key parameters in their physiological range. We use this dataset to train an artificial neural network (ANN) and we use it to predict patient's response to anticoagulant therapy under flow. The algorithm is available and can be accessed through the link: https://github.com/MPS7/ML_coag. It yields an accuracy of 96 % which suggests that its usefulness can be assessed in a randomized clinical trial. The exploration of the model dynamics explains the decisions taken by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高文强完成签到 ,获得积分10
刚刚
繁荣的听南完成签到,获得积分10
1秒前
彳亍发布了新的文献求助20
1秒前
乐乐应助树袋采纳,获得10
1秒前
1秒前
pumpkin发布了新的文献求助10
2秒前
思维隋发布了新的文献求助10
2秒前
legend完成签到 ,获得积分10
3秒前
情怀应助Manta采纳,获得10
4秒前
4秒前
默默杨完成签到,获得积分10
4秒前
无花果应助zhjwu采纳,获得10
6秒前
7秒前
orixero应助邱丘邱采纳,获得15
8秒前
8秒前
9秒前
自闭的研究生完成签到,获得积分10
10秒前
BOLI完成签到,获得积分10
10秒前
12秒前
张进萍发布了新的文献求助10
13秒前
13秒前
柏达发布了新的文献求助10
14秒前
Leofar完成签到 ,获得积分10
16秒前
18秒前
18秒前
legend关注了科研通微信公众号
21秒前
liyuchen完成签到,获得积分10
21秒前
Hayat应助美味的薯片采纳,获得10
23秒前
冷傲老九发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
26秒前
26秒前
28秒前
程荷芬完成签到,获得积分10
28秒前
搜集达人应助雪糕采纳,获得10
28秒前
潘潘发布了新的文献求助10
29秒前
30秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075