Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow

抗凝剂 抗凝治疗 血栓 计算机科学 养生 人工智能 医学 凝血病 重症监护医学 机器学习 外科
作者
Anass Bouchnita,Patrice Nony,Jean-Pierre Llored,Vitaly Volpert
出处
期刊:Mathematical biosciences [Elsevier]
卷期号:349: 108830-108830 被引量:5
标识
DOI:10.1016/j.mbs.2022.108830
摘要

Anticoagulant drugs are commonly prescribed to prevent hypercoagulable states in patients with venous thromboembolism. The choice of the most efficient anticoagulant and the appropriate dosage regimen remain a complex problem because of the intersubject variability in the coagulation kinetics and the effect of blood flow. The rapid assessment of the patient-specific response to anticoagulant regimens would assist clinical decision-making and ensure efficient management of coagulopathy. In this work, we introduce a novel approach that combines computational modeling and deep learning for the fast prediction of the patient-specific response to anticoagulant regimens. We extend a previously developed model to explore the spatio-temporal dynamics of thrombin generation and thrombus formation under anticoagulation therapy. Using a 1D version of the model, we generate a dataset of thrombus formation for thousands of virtual patients by varying key parameters in their physiological range. We use this dataset to train an artificial neural network (ANN) and we use it to predict patient's response to anticoagulant therapy under flow. The algorithm is available and can be accessed through the link: https://github.com/MPS7/ML_coag. It yields an accuracy of 96 % which suggests that its usefulness can be assessed in a randomized clinical trial. The exploration of the model dynamics explains the decisions taken by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolo发布了新的文献求助10
刚刚
刚刚
allenice完成签到,获得积分10
刚刚
1秒前
1秒前
音乐发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
华仔应助沙拉采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
Owen应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助夏夏采纳,获得10
3秒前
英俊的铭应助夏夏采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
万能图书馆应助夏夏采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI5应助夏夏采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
赘婿应助夏夏采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
cc应助夏夏采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
yun尘世应助科研通管家采纳,获得10
4秒前
仿生人完成签到,获得积分10
4秒前
CodeCraft应助yxy采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
福娃发布了新的文献求助10
4秒前
Akim应助科研通管家采纳,获得30
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762