Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction

健康状况 曲率 稳健性(进化) 电池(电) 人工神经网络 计算机科学 电火花加工 均方误差 人工智能 数据挖掘 工程类 机械加工 数学 统计 功率(物理) 物理 几何学 基因 机械工程 化学 量子力学 生物化学
作者
Hui Hwang Goh,Zhentao Lan,Dongdong Zhang,Wei Dai,Tonni Agustiono Kurniawan,Kai Chen Goh
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:50: 104646-104646 被引量:100
标识
DOI:10.1016/j.est.2022.104646
摘要

Lithium battery applications in a variety of engineering sectors must be safe and reliable while maintaining a high level of energy efficiency. An accurate assessment of the battery's state of health (SOH) is critical in battery management systems (BMS). In recent years, it has been proved that machine learning is effective at estimating SOH. This work proposes a novel approach of health indicator (HI) extraction based on the U-chord curvature model, based on a complete analysis of battery aging data. In contrast to previous approaches for feature extraction, our method splits the discharge process into various phases based on the curvature of the discharge curve and extracts many HIs with a high correlation to battery SOH in the discharge platform stage of the discharge curve. To demonstrate the superiority of the proposed model, several well-known machine learning algorithms are employed to estimate SOH using extracted attributes. Long short-term memory (LSTM) and artificial neural networks (ANNs) are examples of these techniques. Accuracy, reliability, and robustness of the proposed model are evaluated using three publicly available data sets. According to the data, the model appears to be capable of accurately calculating the battery's SOH, with a mean absolute error of less than 1.08% and a root mean square error of less than 1.46% for various battery types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
丘比特应助xzn1123采纳,获得10
1秒前
1秒前
包容若风完成签到 ,获得积分10
2秒前
咕咚咕咚发布了新的文献求助10
2秒前
自然的含烟完成签到,获得积分10
2秒前
safire发布了新的文献求助10
3秒前
大饼发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
Sandro完成签到,获得积分10
3秒前
浣熊应助科研通管家采纳,获得10
3秒前
儒雅冰岚发布了新的文献求助10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
情怀应助彼时光影采纳,获得10
4秒前
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浣熊应助科研通管家采纳,获得10
4秒前
4秒前
派兀派完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
袁奇点发布了新的文献求助30
6秒前
追寻源智关注了科研通微信公众号
6秒前
CYcola关注了科研通微信公众号
6秒前
无限的山水完成签到 ,获得积分10
6秒前
7秒前
7秒前
xpdnpu完成签到,获得积分10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163