Lightweight dense-scale network (LDSNet) for corn leaf disease identification

计算机科学 人工智能 鉴定(生物学) 卷积(计算机科学) 比例(比率) 模式识别(心理学) 试验装置 适应性 算法 人工神经网络 地图学 生态学 植物 生物 地理
作者
Weihui Zeng,Haidong Li,Gensheng Hu,Dong Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 106943-106943 被引量:79
标识
DOI:10.1016/j.compag.2022.106943
摘要

The identification of corn leaf diseases in real scenarios faces important challenges, such as complex background interference, intra- and inter-class scale changes, and lightweight model deployment. To overcome these challenges, we propose a lightweight dense-scale network (LDSNet) for real-world corn leaf disease image identification. The main component of LDSNet is the improved dense dilated convolution (IDDC) block that has two key improvements relative to existing essential blocks. The first one is that it improves the adaptability to the scale change of corn leaf diseases through the dense connection of different dilation rate convolutions. The second improvement is that it replaces the concatenation connection with a new fusion method, namely, coordinated attention scale fusion, for enhanced extraction of corn leaf features in a complex background. In addition, we propose a new loss function to optimize the LDSNet network model. Experimental results show that the accuracy of the optimized model on the test data set reaches 95.4%, which is better than the accuracy of existing heavyweight networks, such as AlexNet, VGG16, VGG19, and ResNet50, and lightweight networks, such as DenseNet121, GoogleNet, MobileNet (V1, V2, and V3-large), ShuffleNetV2, and GhostNet. The number of parameters accounts for only 45.4% of the minimum number of parameters (ShuffleNetV2, 1.3M) in the compared model. To verify the practical application performance of the proposed network model, we apply the trained model to a mobile phone. A real-world test proves that our model has strong compatibility and high recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fixing发布了新的文献求助10
1秒前
yyy关闭了yyy文献求助
3秒前
3秒前
在水一方应助JingY采纳,获得10
4秒前
内向怀曼发布了新的文献求助10
4秒前
flance完成签到 ,获得积分10
4秒前
liuynnn完成签到,获得积分20
5秒前
瘦瘦妖妖发布了新的文献求助10
5秒前
华仔应助贺兰采纳,获得10
6秒前
香蕉觅云应助99668采纳,获得10
7秒前
兜哥完成签到,获得积分10
9秒前
慕凝完成签到,获得积分20
10秒前
bkagyin应助oyx53采纳,获得10
12秒前
12秒前
Leif完成签到,获得积分0
13秒前
xx完成签到,获得积分20
13秒前
13秒前
闪闪落雁完成签到,获得积分10
14秒前
Singularity应助Juli采纳,获得10
14秒前
Orange应助fixing采纳,获得10
16秒前
mouxq发布了新的文献求助10
16秒前
王丝语完成签到,获得积分10
16秒前
17秒前
17秒前
我ppp发布了新的文献求助10
18秒前
19秒前
20秒前
刘丽梅完成签到 ,获得积分10
21秒前
21秒前
韶华发布了新的文献求助10
22秒前
23秒前
棋士应助不是小苦瓜采纳,获得10
24秒前
李爱国应助Dreamer0422采纳,获得10
26秒前
贺兰发布了新的文献求助10
26秒前
陈思思发布了新的文献求助10
28秒前
fixing完成签到,获得积分10
30秒前
30秒前
Owen应助科研通管家采纳,获得10
30秒前
Amu1uu应助科研通管家采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019