Lightweight dense-scale network (LDSNet) for corn leaf disease identification

计算机科学 人工智能 鉴定(生物学) 卷积(计算机科学) 比例(比率) 模式识别(心理学) 试验装置 适应性 算法 人工神经网络 地图学 生态学 植物 生物 地理
作者
Weihui Zeng,Haidong Li,Gensheng Hu,Dong Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106943-106943 被引量:50
标识
DOI:10.1016/j.compag.2022.106943
摘要

The identification of corn leaf diseases in real scenarios faces important challenges, such as complex background interference, intra- and inter-class scale changes, and lightweight model deployment. To overcome these challenges, we propose a lightweight dense-scale network (LDSNet) for real-world corn leaf disease image identification. The main component of LDSNet is the improved dense dilated convolution (IDDC) block that has two key improvements relative to existing essential blocks. The first one is that it improves the adaptability to the scale change of corn leaf diseases through the dense connection of different dilation rate convolutions. The second improvement is that it replaces the concatenation connection with a new fusion method, namely, coordinated attention scale fusion, for enhanced extraction of corn leaf features in a complex background. In addition, we propose a new loss function to optimize the LDSNet network model. Experimental results show that the accuracy of the optimized model on the test data set reaches 95.4%, which is better than the accuracy of existing heavyweight networks, such as AlexNet, VGG16, VGG19, and ResNet50, and lightweight networks, such as DenseNet121, GoogleNet, MobileNet (V1, V2, and V3-large), ShuffleNetV2, and GhostNet. The number of parameters accounts for only 45.4% of the minimum number of parameters (ShuffleNetV2, 1.3M) in the compared model. To verify the practical application performance of the proposed network model, we apply the trained model to a mobile phone. A real-world test proves that our model has strong compatibility and high recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seaya发布了新的文献求助10
刚刚
yiyi131发布了新的文献求助10
1秒前
ZhihaoYang完成签到,获得积分10
1秒前
1秒前
1秒前
hwen1998完成签到 ,获得积分10
1秒前
2秒前
Naxop完成签到,获得积分10
3秒前
Zooey旎旎完成签到,获得积分10
3秒前
ABC熊ABC发布了新的文献求助10
3秒前
Owen应助稳重的鱼采纳,获得10
4秒前
捏捏我的小短腿完成签到,获得积分10
4秒前
4秒前
一一发布了新的文献求助20
5秒前
王韩完成签到,获得积分10
5秒前
初夏关注了科研通微信公众号
5秒前
甜甜冬寒发布了新的文献求助10
5秒前
zhangwei应助凯蒂晗晗采纳,获得10
6秒前
Aliofyou完成签到,获得积分10
6秒前
6秒前
冷艳哈密瓜完成签到 ,获得积分10
6秒前
司空若云完成签到,获得积分10
6秒前
7秒前
ricky发布了新的文献求助10
7秒前
Wen完成签到,获得积分10
8秒前
CodeCraft应助wiwin采纳,获得10
8秒前
8秒前
8秒前
8秒前
zll完成签到 ,获得积分10
9秒前
9秒前
啊啊啊完成签到 ,获得积分10
9秒前
NexusExplorer应助体贴花卷采纳,获得10
10秒前
10秒前
emma完成签到,获得积分20
10秒前
司空若云发布了新的文献求助10
11秒前
11秒前
万能图书馆应助郝宝真采纳,获得10
11秒前
刘欢发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587