Lightweight dense-scale network (LDSNet) for corn leaf disease identification

计算机科学 人工智能 鉴定(生物学) 卷积(计算机科学) 比例(比率) 模式识别(心理学) 试验装置 适应性 算法 人工神经网络 地图学 生态学 植物 生物 地理
作者
Weihui Zeng,Haidong Li,Gensheng Hu,Dong Liang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106943-106943 被引量:50
标识
DOI:10.1016/j.compag.2022.106943
摘要

The identification of corn leaf diseases in real scenarios faces important challenges, such as complex background interference, intra- and inter-class scale changes, and lightweight model deployment. To overcome these challenges, we propose a lightweight dense-scale network (LDSNet) for real-world corn leaf disease image identification. The main component of LDSNet is the improved dense dilated convolution (IDDC) block that has two key improvements relative to existing essential blocks. The first one is that it improves the adaptability to the scale change of corn leaf diseases through the dense connection of different dilation rate convolutions. The second improvement is that it replaces the concatenation connection with a new fusion method, namely, coordinated attention scale fusion, for enhanced extraction of corn leaf features in a complex background. In addition, we propose a new loss function to optimize the LDSNet network model. Experimental results show that the accuracy of the optimized model on the test data set reaches 95.4%, which is better than the accuracy of existing heavyweight networks, such as AlexNet, VGG16, VGG19, and ResNet50, and lightweight networks, such as DenseNet121, GoogleNet, MobileNet (V1, V2, and V3-large), ShuffleNetV2, and GhostNet. The number of parameters accounts for only 45.4% of the minimum number of parameters (ShuffleNetV2, 1.3M) in the compared model. To verify the practical application performance of the proposed network model, we apply the trained model to a mobile phone. A real-world test proves that our model has strong compatibility and high recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助七大洋的风采纳,获得10
1秒前
1秒前
科研通AI5应助一平采纳,获得80
1秒前
wxwang完成签到,获得积分10
1秒前
廖同学完成签到 ,获得积分10
2秒前
orixero应助李家乐采纳,获得10
2秒前
3秒前
3秒前
lujiajia发布了新的文献求助10
3秒前
4秒前
啊啊啊啊啊叶完成签到 ,获得积分10
4秒前
LLL完成签到 ,获得积分10
4秒前
sanyecao383完成签到,获得积分10
4秒前
Draeck完成签到,获得积分10
5秒前
cruise完成签到,获得积分10
5秒前
在水一方应助念念采纳,获得10
5秒前
5秒前
6秒前
万能图书馆应助动听导师采纳,获得10
6秒前
MADKAI发布了新的文献求助10
6秒前
科研通AI5应助蒋念寒采纳,获得10
7秒前
ric发布了新的文献求助200
7秒前
Li完成签到,获得积分10
7秒前
7秒前
min17完成签到,获得积分10
8秒前
8秒前
小黄发布了新的文献求助10
8秒前
Lucas应助dldddz采纳,获得10
9秒前
9秒前
柠木发布了新的文献求助10
9秒前
郭泓嵩完成签到,获得积分10
10秒前
自由刺猬发布了新的文献求助20
10秒前
weddcf发布了新的文献求助10
10秒前
江月年完成签到 ,获得积分10
10秒前
ZHANG_Kun完成签到 ,获得积分10
10秒前
bin0920完成签到,获得积分10
11秒前
12秒前
12秒前
cruise发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678