Predicting brain structural network using functional connectivity

人类连接体项目 鉴别器 计算机科学 人工智能 功能连接 连接体 功能(生物学) 发电机(电路理论) 机器学习 神经科学 心理学 生物 电信 功率(物理) 物理 量子力学 进化生物学 探测器
作者
Lu Zhang,Li Wang,Dajiang Zhu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102463-102463 被引量:36
标识
DOI:10.1016/j.media.2022.102463
摘要

Uncovering the non-trivial brain structure–function relationship is fundamentally important for revealing organizational principles of human brain. However, it is challenging to infer a reliable relationship between individual brain structure and function, e.g., the relations between individual brain structural connectivity (SC) and functional connectivity (FC). Brain structure–function displays a distributed and heterogeneous pattern, that is, many functional relationships arise from non-overlapping sets of anatomical connections. This complex relation can be interwoven with widely existed individual structural and functional variations. Motivated by the advances of generative adversarial network (GAN) and graph convolutional network (GCN) in the deep learning field, in this work, we proposed a multi-GCN based GAN (MGCN-GAN) to infer individual SC based on corresponding FC by automatically learning the complex associations between individual brain structural and functional networks. The generator of MGCN-GAN is composed of multiple multi-layer GCNs which are designed to model complex indirect connections in brain network. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish the predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more effectively. Using Human Connectome Project (HCP) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset as test beds, our MGCN-GAN model can generate reliable individual SC from FC. This result implies that there may exist a common regulation between specific brain structural and functional architectures across different individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carol发布了新的文献求助10
1秒前
不安青牛应助乖乖采纳,获得10
1秒前
1秒前
思源应助脆弱的仙人掌采纳,获得10
2秒前
852应助杨金城采纳,获得10
3秒前
3秒前
卓延恶发布了新的文献求助10
4秒前
gz发布了新的文献求助10
4秒前
科目三应助xinyuxxx采纳,获得10
5秒前
xzy完成签到 ,获得积分10
5秒前
5秒前
大个应助科研通管家采纳,获得30
7秒前
大个应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
萧水白应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
乐观发卡完成签到,获得积分10
8秒前
8秒前
顺心绮兰完成签到,获得积分10
8秒前
肖亚鑫发布了新的文献求助10
8秒前
科研通AI2S应助sldelibra采纳,获得10
10秒前
10秒前
T_MC郭发布了新的文献求助10
10秒前
11秒前
11秒前
科研通AI2S应助沧海一笑采纳,获得10
11秒前
11秒前
12秒前
遥远的尧应助Dyson采纳,获得10
13秒前
13秒前
lkk完成签到,获得积分20
14秒前
Ava应助卓延恶采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943