亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective optimization control for tunnel boring machine performance improvement under uncertainty

分类 隧道掘进机 遗传算法 人工神经网络 工程类 控制(管理) 数学优化 计算机科学 人工智能 算法 数学 结构工程
作者
Wenli Liu,Ang Li,Congjian Liu
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:139: 104310-104310 被引量:38
标识
DOI:10.1016/j.autcon.2022.104310
摘要

The tunnel boring machine (TBM) is an important and common construction method for urban subways, and it requires a detailed and rational control strategy to ensure the safety and efficiency of TBM excavation. Multiple objectives are required for shield tunneling; however, the control of TBM parameters is a complex and difficult problem under frequently encountered unforeseen geological conditions. Hence, a multi-objective optimization framework has been proposed to provide suggested TBM operational parameters for decision making under uncertainty. A Grey Wolf Optimizer-Generalized Regression Neural Network (GWO-GRNN) model has been developed to predict the TBM performance under different TBM operating parameters and geological conditions. Then, the nondominated sorting genetic algorithm (NSGA-II) is introduced to solve the multi-objective optimization problem and obtain the final decision-making solutions. To indicate the applicability of the proposed multi-objective optimization (MOO) framework, the Wuhan San-Yang Road Highway-Rail Tunnel Shield Project was adopted as an example. Results show that the GWO-GRNN model is in good agreement with the experimental measurements to predict the advance speed and ground settlement, with R2 values of 0.97 and 0.91, respectively. Additionally, the results of NSGA-II optimization show that the proposed framework can realize the optimization of multiple objectives under different geological conditions. The results of this research are able to generate the optimal solutions for TBM operators, which can improve decision making when conflicting TBM excavation objectives exist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayat应助今天也是好天气采纳,获得10
8秒前
宝贝丫头完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助30
13秒前
15秒前
禹山河发布了新的文献求助10
20秒前
明理的延恶完成签到 ,获得积分10
28秒前
29秒前
刘刘完成签到 ,获得积分10
32秒前
40秒前
沉默的虔发布了新的文献求助10
43秒前
李健的粉丝团团长应助sqb采纳,获得10
48秒前
潔思米完成签到,获得积分10
59秒前
SciGPT应助沉默的虔采纳,获得10
1分钟前
1分钟前
Hung完成签到,获得积分10
1分钟前
ZXH发布了新的文献求助10
1分钟前
圈哥完成签到,获得积分10
1分钟前
小岩完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
简单完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
沉默的虔发布了新的文献求助10
1分钟前
HuiHui完成签到,获得积分10
1分钟前
2分钟前
念0完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128492
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056