Early Diagnosis of Acute Ischemic Stroke by Brain Computed Tomography Perfusion Imaging Combined with Head and Neck Computed Tomography Angiography on Deep Learning Algorithm

医学 计算机断层血管造影 灌注扫描 头颈部 灌注 计算机断层血管造影 血管造影 计算机断层摄影术 放射科 外科
作者
Yi Yang,Jinjun Yang,Jiao Feng,Yi Wang
出处
期刊:Contrast Media & Molecular Imaging [Hindawi Limited]
卷期号:2022 (1): 5373585-5373585 被引量:16
标识
DOI:10.1155/2022/5373585
摘要

The purpose of the research was to discuss the application values of deep learning algorithm‐based computed tomography perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in the diagnosis of ultra‐early acute ischemic stroke. Firstly, 88 patients with acute ischemic stroke were selected as the research objects and performed with cerebral CTP and CTA examinations. In order to improve the effect of image diagnosis, a new deconvolution network model AD‐CNNnet based on deep learning was proposed and used in patient CTP image evaluation. The results showed that the peak signal‐to‐noise ratio (PSNR) and feature similarity (FSIM) of the AD‐CNNnet method were significantly higher than those of traditional methods, while the normalized mean square error (NMSE) was significantly lower than that of traditional algorithms ( P < 0.05). 80 cases were positive by CTP‐CTA, including 16 cases of hyperacute ischemic stroke and 64 cases of acute ischemic stroke. The diagnostic sensitivity was 93.66%, and the specificity was 96.18%. The cerebral blood flow (CBF), cerebral blood volume (CBV), and the mean transit time (MTT) in the infarcted area were significantly greater than those in the corresponding healthy side area, and the time to peak (TTP) was significantly less than that in the corresponding healthy side area ( P < 0.05). The cerebral perfusion parameters CBF, TTP, and MTT in the penumbra were significantly different from those in the infarct central area and the corresponding contralateral area, and TTP was the most sensitive ( P < 0.05). To sum up, deep learning algorithm‐based CTP combined with CTA could find the location of cerebral infarction lesions as early as possible to provide a reliable diagnostic result for the diagnosis of ultra‐early acute ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜甜亦丝发布了新的文献求助10
刚刚
yaohuici发布了新的文献求助10
2秒前
2秒前
Deng发布了新的文献求助10
2秒前
英俊的铭应助是小袁呀采纳,获得10
3秒前
英姑应助alex采纳,获得10
4秒前
faye发布了新的文献求助10
6秒前
Ava应助ndsiu采纳,获得10
6秒前
yu发布了新的文献求助10
7秒前
7秒前
7秒前
KAIDOHARA完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
xzxhh完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
小雨关注了科研通微信公众号
10秒前
xin发布了新的文献求助10
11秒前
12秒前
朴实雨竹完成签到,获得积分10
12秒前
从容曼文发布了新的文献求助10
12秒前
安详的未来完成签到,获得积分10
12秒前
科研通AI6应助读书的时候采纳,获得10
13秒前
13秒前
13秒前
14秒前
江上发布了新的文献求助10
14秒前
顾矜应助益生菌小哥采纳,获得10
14秒前
louis dai发布了新的文献求助10
14秒前
xzxhh关注了科研通微信公众号
14秒前
Akim应助外向梦山采纳,获得10
14秒前
16秒前
布丁完成签到 ,获得积分10
16秒前
17秒前
17秒前
无情墨镜发布了新的文献求助10
17秒前
curtisness应助珠珠崽子采纳,获得10
17秒前
zdd发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720320
求助须知:如何正确求助?哪些是违规求助? 5259567
关于积分的说明 15290807
捐赠科研通 4869734
什么是DOI,文献DOI怎么找? 2614988
邀请新用户注册赠送积分活动 1564964
关于科研通互助平台的介绍 1522137