Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jincen发布了新的文献求助10
1秒前
1秒前
骡子发布了新的文献求助30
1秒前
玉锅巴完成签到,获得积分10
2秒前
3秒前
阿晨完成签到,获得积分10
4秒前
kento完成签到,获得积分0
4秒前
汤泽琪发布了新的文献求助30
4秒前
5秒前
小杭76应助Bin_Liu采纳,获得10
6秒前
hbhbj发布了新的文献求助10
7秒前
jy完成签到,获得积分10
8秒前
9秒前
ranccy发布了新的文献求助30
9秒前
flow完成签到,获得积分10
9秒前
鱼粉发布了新的文献求助10
10秒前
夜城如梦醉完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
水凝胶发布了新的文献求助10
12秒前
12秒前
隐形曼青应助骡子采纳,获得10
13秒前
hbhbj发布了新的文献求助10
14秒前
关我屁事完成签到 ,获得积分10
14秒前
白糖完成签到,获得积分10
14秒前
林泽华发布了新的文献求助10
15秒前
1s完成签到,获得积分10
16秒前
16秒前
17秒前
旋光活性完成签到 ,获得积分10
18秒前
Rufus发布了新的文献求助10
18秒前
Air云完成签到,获得积分10
19秒前
脑洞疼应助栀栀云安采纳,获得10
19秒前
Jiro完成签到,获得积分10
19秒前
tleeny发布了新的文献求助10
21秒前
hbhbj发布了新的文献求助10
21秒前
RLV完成签到,获得积分10
22秒前
头不大完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306048
求助须知:如何正确求助?哪些是违规求助? 4451900
关于积分的说明 13853368
捐赠科研通 4339433
什么是DOI,文献DOI怎么找? 2382558
邀请新用户注册赠送积分活动 1377532
关于科研通互助平台的介绍 1345147