Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuzhigang完成签到 ,获得积分0
刚刚
1秒前
顾矜应助坚强夜南采纳,获得10
1秒前
neufy发布了新的文献求助10
1秒前
liangqiwei发布了新的文献求助10
2秒前
2秒前
WWZ发布了新的文献求助10
2秒前
3秒前
Zhouyj发布了新的文献求助10
4秒前
天天快乐应助朱佳慧采纳,获得10
4秒前
飞儿发布了新的文献求助10
5秒前
hzs完成签到,获得积分10
6秒前
FFFF发布了新的文献求助10
6秒前
7秒前
monkey发布了新的文献求助10
7秒前
充电宝应助lsq108采纳,获得10
8秒前
azhar发布了新的文献求助10
8秒前
lxlxllx89发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
沉默凝雁完成签到,获得积分10
9秒前
爆米花应助阳光Dorrie采纳,获得10
9秒前
10秒前
自由的从梦完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Mic应助abcd采纳,获得40
10秒前
祖之微笑发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
11秒前
11秒前
嘉博学长完成签到,获得积分10
12秒前
xiaoxie完成签到 ,获得积分10
13秒前
深情安青应助追忆淮采纳,获得10
13秒前
13秒前
14秒前
Mryuan完成签到,获得积分10
14秒前
小七完成签到,获得积分10
15秒前
知足常乐发布了新的文献求助10
15秒前
拼搏尔风完成签到,获得积分10
15秒前
怕黑的凌柏完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400