Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻凌青发布了新的文献求助10
刚刚
1秒前
Xicuws发布了新的文献求助20
2秒前
是阿刁完成签到,获得积分10
3秒前
裸素完成签到,获得积分10
4秒前
5秒前
6秒前
酷酷的冰真应助白日焰火采纳,获得10
8秒前
无情向薇应助白日焰火采纳,获得10
8秒前
Akim应助白日焰火采纳,获得10
8秒前
树下小草完成签到,获得积分10
10秒前
qiang发布了新的文献求助10
10秒前
优秀的流沙完成签到,获得积分10
12秒前
14秒前
彭于晏应助Sniu采纳,获得10
15秒前
Acadia发布了新的文献求助10
15秒前
Rita发布了新的文献求助10
16秒前
充电宝应助welllllllllllll采纳,获得10
17秒前
18秒前
18秒前
orixero应助Rourou采纳,获得10
20秒前
邢文瑞发布了新的文献求助10
21秒前
yufan发布了新的文献求助10
22秒前
ding应助Xicuws采纳,获得20
22秒前
2429739856发布了新的文献求助30
22秒前
23秒前
李应帅完成签到 ,获得积分10
23秒前
hoshiran发布了新的文献求助10
23秒前
派大星完成签到,获得积分10
24秒前
27秒前
qcwindchasing完成签到 ,获得积分10
28秒前
29秒前
29秒前
小肥吴发布了新的文献求助10
33秒前
清风徐来发布了新的文献求助30
34秒前
35秒前
冬冬完成签到,获得积分10
37秒前
高槻泉完成签到 ,获得积分10
37秒前
38秒前
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579