Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助科研通管家采纳,获得30
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得70
1秒前
buno应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
涵青夏完成签到,获得积分10
1秒前
Linos应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
2秒前
孤独的远山完成签到,获得积分10
2秒前
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
残剑月应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
高高发布了新的文献求助10
3秒前
ChangzhenSong完成签到,获得积分10
3秒前
jinke完成签到,获得积分10
4秒前
王筠曦发布了新的文献求助10
4秒前
4秒前
领导范儿应助lemon采纳,获得10
4秒前
东原角发布了新的文献求助10
5秒前
5秒前
承乐发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836