Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
企鹅不耐热完成签到,获得积分10
2秒前
外向不愁发布了新的文献求助10
2秒前
YY发布了新的文献求助10
3秒前
4秒前
haul完成签到 ,获得积分20
5秒前
一丁雨发布了新的文献求助10
6秒前
小方同学完成签到,获得积分20
7秒前
一郭红烧肉应助宋雪芹采纳,获得10
7秒前
所所应助Y123采纳,获得20
8秒前
笨笨娇完成签到 ,获得积分10
8秒前
科研打工人完成签到,获得积分10
8秒前
9秒前
枝念之年发布了新的文献求助30
11秒前
12秒前
领导范儿应助单纯的巧荷采纳,获得10
12秒前
13秒前
WILD发布了新的文献求助10
13秒前
科研通AI2S应助shanshan采纳,获得10
13秒前
14秒前
15秒前
小方同学发布了新的文献求助10
16秒前
Henry应助bmyy采纳,获得200
17秒前
17秒前
18秒前
18秒前
石昊发布了新的文献求助10
18秒前
19秒前
cdy完成签到 ,获得积分10
19秒前
22秒前
kokoko完成签到,获得积分10
22秒前
Y123发布了新的文献求助20
22秒前
22秒前
CC发布了新的文献求助10
23秒前
耍酷香菇完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
李光完成签到,获得积分10
27秒前
波波发布了新的文献求助10
28秒前
传奇3应助orange采纳,获得10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150268
求助须知:如何正确求助?哪些是违规求助? 2801406
关于积分的说明 7844576
捐赠科研通 2458893
什么是DOI,文献DOI怎么找? 1308793
科研通“疑难数据库(出版商)”最低求助积分说明 628566
版权声明 601721