亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021

臭氧 环境科学 北京 空气污染 污染物 微粒 大气科学 污染 空气污染物 风速 气象学 气候学 中国 化学 地理 考古 有机化学 地质学 生物 生态学
作者
Yan Lyu,Qinru Ju,Fengmao Lv,Jialiang Feng,Xiaobing Pang,Xiang Li
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119420-119420 被引量:40
标识
DOI:10.1016/j.envpol.2022.119420
摘要

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的白云完成签到 ,获得积分10
6秒前
30秒前
34秒前
完美世界应助小杰杰采纳,获得10
36秒前
41秒前
草上飞完成签到 ,获得积分10
51秒前
lmm完成签到 ,获得积分10
51秒前
52秒前
orangel完成签到,获得积分10
53秒前
wang完成签到 ,获得积分10
56秒前
小杰杰发布了新的文献求助10
58秒前
1分钟前
研友_8RyzBZ完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
JXY发布了新的文献求助10
1分钟前
1分钟前
JXY完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
2分钟前
今后应助FAYE采纳,获得10
2分钟前
2分钟前
FAYE发布了新的文献求助10
2分钟前
自由翠桃完成签到,获得积分10
3分钟前
寻道图强举报lim求助涉嫌违规
3分钟前
Brak完成签到 ,获得积分10
3分钟前
auc完成签到,获得积分10
4分钟前
信号灯完成签到 ,获得积分10
4分钟前
4分钟前
搞怪柔完成签到,获得积分10
4分钟前
jiakang完成签到,获得积分10
4分钟前
寻道图强举报Wrui求助涉嫌违规
5分钟前
大个应助TXZ06采纳,获得10
5分钟前
5分钟前
liuerlong发布了新的文献求助10
5分钟前
5分钟前
5分钟前
TXZ06发布了新的文献求助10
5分钟前
搜集达人应助陳.采纳,获得10
5分钟前
5分钟前
ARESCI发布了新的文献求助10
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644685
求助须知:如何正确求助?哪些是违规求助? 4765058
关于积分的说明 15025485
捐赠科研通 4803051
什么是DOI,文献DOI怎么找? 2567848
邀请新用户注册赠送积分活动 1525442
关于科研通互助平台的介绍 1484979