Adaptive granulation Renyi rough entropy image thresholding method with nested optimization

阈值 造粒 计算机科学 人工智能 雷诺熵 模式识别(心理学) 熵(时间箭头) 数学 图像(数学) 最大熵原理 量子力学 经典力学 物理
作者
Bo Lei,Jiulun Fan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117378-117378 被引量:8
标识
DOI:10.1016/j.eswa.2022.117378
摘要

The rough entropy based image thresholding algorithm can effectively deal with the uncertainty information in an image. Nevertheless, the existing rough entropy based thresholding methods have two limitations. One is that there is no generalized rough entropy definition. The other is that the granule size cannot be selected automatically in combination with the image information in the granulation process. In order to address these two problems, an adaptive granulation Renyi rough entropy image thresholding method with nested optimization is proposed in this paper. First, a definition of generalized rough entropy with parameter based on Renyi entropy form is proposed to describe the uncertainty information of complex images. Second, in order to select the granule size in combination with the specific image information, a granule size selection method is proposed by maximizing the uniformity of the segmented image regions. Finally, a nested optimization adaptive granulation Renyi rough entropy thresholding segmentation algorithm is proposed. In the experiments, the Renyi rough entropy is compared with the existing four rough entropy in image thresholding. The new parametric rough entropy can obtain better segmentation results than the other existing rough entropy. The novel adaptive granulation Renyi rough entropy thresholding segmentation algorithm is compared with the state-of-the-art image segmentation methods on several different image data sets, which verifies the effectiveness of the novel algorithm. • Define a Renyi rough entropy measure. • Propose the minimized Renyi rough entropy thresholding (RRET) method. • Propose an adaptive granule size selection method. • Propose an adaptive granulation RRET algorithm with nested optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心小狗发布了新的文献求助10
刚刚
Potato123123完成签到 ,获得积分10
1秒前
浅出南完成签到,获得积分10
1秒前
Hi发布了新的文献求助10
1秒前
1秒前
1秒前
丸子完成签到,获得积分10
1秒前
2秒前
Ffan发布了新的文献求助30
2秒前
photogragher完成签到,获得积分10
3秒前
行者发布了新的文献求助10
4秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
大模型应助shen5920采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
诸怀曼发布了新的文献求助10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
老年陈皮完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
liny完成签到,获得积分20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
丰富若烟发布了新的文献求助20
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得20
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342127
求助须知:如何正确求助?哪些是违规求助? 4478048
关于积分的说明 13938042
捐赠科研通 4374445
什么是DOI,文献DOI怎么找? 2403529
邀请新用户注册赠送积分活动 1396244
关于科研通互助平台的介绍 1368307