Adaptive granulation Renyi rough entropy image thresholding method with nested optimization

阈值 造粒 计算机科学 人工智能 雷诺熵 模式识别(心理学) 熵(时间箭头) 数学 图像(数学) 最大熵原理 量子力学 经典力学 物理
作者
Bo Lei,Jiulun Fan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117378-117378 被引量:8
标识
DOI:10.1016/j.eswa.2022.117378
摘要

The rough entropy based image thresholding algorithm can effectively deal with the uncertainty information in an image. Nevertheless, the existing rough entropy based thresholding methods have two limitations. One is that there is no generalized rough entropy definition. The other is that the granule size cannot be selected automatically in combination with the image information in the granulation process. In order to address these two problems, an adaptive granulation Renyi rough entropy image thresholding method with nested optimization is proposed in this paper. First, a definition of generalized rough entropy with parameter based on Renyi entropy form is proposed to describe the uncertainty information of complex images. Second, in order to select the granule size in combination with the specific image information, a granule size selection method is proposed by maximizing the uniformity of the segmented image regions. Finally, a nested optimization adaptive granulation Renyi rough entropy thresholding segmentation algorithm is proposed. In the experiments, the Renyi rough entropy is compared with the existing four rough entropy in image thresholding. The new parametric rough entropy can obtain better segmentation results than the other existing rough entropy. The novel adaptive granulation Renyi rough entropy thresholding segmentation algorithm is compared with the state-of-the-art image segmentation methods on several different image data sets, which verifies the effectiveness of the novel algorithm. • Define a Renyi rough entropy measure. • Propose the minimized Renyi rough entropy thresholding (RRET) method. • Propose an adaptive granule size selection method. • Propose an adaptive granulation RRET algorithm with nested optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性映秋发布了新的文献求助10
刚刚
刚刚
科研通AI5应助爱听歌起眸采纳,获得10
刚刚
1秒前
1秒前
athenalin1988完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
上官若男应助周五采纳,获得30
4秒前
科研通AI5应助鲜艳的帅哥采纳,获得10
4秒前
HJJHJH发布了新的文献求助10
5秒前
S-Lab Sonic完成签到,获得积分10
5秒前
6秒前
沙亮完成签到 ,获得积分10
6秒前
妮子完成签到,获得积分10
6秒前
TK发布了新的文献求助10
7秒前
7秒前
hyg发布了新的文献求助10
7秒前
9秒前
英俊的铭应助xiu采纳,获得10
9秒前
烟花应助HJJHJH采纳,获得10
10秒前
耍酷弱发布了新的文献求助10
10秒前
李健的小迷弟应助孙1采纳,获得10
15秒前
15秒前
16秒前
why发布了新的文献求助10
16秒前
19秒前
21秒前
汉堡包应助11tty采纳,获得10
22秒前
22秒前
圣尊鳕幽发布了新的文献求助10
22秒前
Firmian完成签到,获得积分10
23秒前
23秒前
花生糕发布了新的文献求助10
23秒前
24秒前
morena发布了新的文献求助30
25秒前
xiu发布了新的文献求助10
26秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228