Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm

计算机科学 混乱的 水准点(测量) 算法 数学优化 早熟收敛 最优化问题 人工智能 数学 粒子群优化 大地测量学 地理
作者
Yongliang Yuan,Xiaokai Mu,Xiangyu Shao,Jianji Ren,Yong Zhao,Zhenxi Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:123: 108947-108947 被引量:89
标识
DOI:10.1016/j.asoc.2022.108947
摘要

Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
起个名不麻烦完成签到 ,获得积分10
1秒前
Gate完成签到,获得积分10
2秒前
呆熊发布了新的文献求助10
2秒前
marjorie发布了新的文献求助10
2秒前
沉静柚子发布了新的文献求助10
3秒前
brave完成签到 ,获得积分10
3秒前
skf发布了新的文献求助10
3秒前
3秒前
guojingjing发布了新的文献求助10
3秒前
三石完成签到,获得积分10
4秒前
4秒前
5秒前
核桃应助zhou_nuo采纳,获得10
5秒前
6秒前
orixero应助穆头呼橹橹采纳,获得10
6秒前
冯先森ya完成签到,获得积分10
6秒前
7秒前
Shaw发布了新的文献求助10
7秒前
霸气小懒虫完成签到,获得积分20
8秒前
8秒前
情怀应助呆熊采纳,获得10
8秒前
wanci应助忧郁的白竹采纳,获得10
9秒前
9秒前
9秒前
10秒前
兰真纯洁发布了新的文献求助10
10秒前
10秒前
哲别发布了新的文献求助10
10秒前
jiaming发布了新的文献求助10
10秒前
11秒前
652183758完成签到 ,获得积分10
11秒前
YYCBNU发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
秋秋秋l完成签到,获得积分10
13秒前
sun发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206480
求助须知:如何正确求助?哪些是违规求助? 4384909
关于积分的说明 13654925
捐赠科研通 4243191
什么是DOI,文献DOI怎么找? 2327972
邀请新用户注册赠送积分活动 1325674
关于科研通互助平台的介绍 1277765