Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm

计算机科学 混乱的 水准点(测量) 算法 数学优化 早熟收敛 最优化问题 人工智能 数学 粒子群优化 大地测量学 地理
作者
Yongliang Yuan,Xiaokai Mu,Xiangyu Shao,Jianji Ren,Yong Zhao,Zhenxi Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:123: 108947-108947 被引量:100
标识
DOI:10.1016/j.asoc.2022.108947
摘要

Highly non-linear optimization problems are widely found in many real-world engineering applications. To tackle these problems, a novel assisted optimization strategy, named elite opposition-based learning and chaotic k-best gravitational search strategy (EOCS), is proposed for the grey wolf optimizer (GWO) algorithm. In the EOCS based grey wolf optimizer (EOCSGWO) algorithm, the elite opposition-based learning strategy (EOBLS) is proposed to take full advantage of better-performing particles for optimization in the next generations. A chaotic k-best gravitational search strategy (CKGSS) is proposed to obtain the adaptive step to improve the global exploratory ability. The performance of the EOCSGWO is verified and compared with those of other seven meta-heuristic optimization algorithms using ten popular benchmark functions. Results show that the EOCSGWO is more competitive in accuracy and robustness, and obtains the first in ranking among the six optimization algorithms. Further, the EOCSGWO is employed to optimize the design of an auto drum fashioned brake. The results show that the braking efficiency factor can be improved by 28.412% compared with the initial design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助雨落采纳,获得10
1秒前
1秒前
小蘑菇应助壮壮采纳,获得10
1秒前
南方周末完成签到,获得积分10
2秒前
yzy发布了新的文献求助10
3秒前
开放青旋应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
大意的枫发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
大个应助fzh采纳,获得50
7秒前
大模型应助ontheway采纳,获得10
7秒前
进击的PhD应助ontheway采纳,获得50
7秒前
JamesPei应助ontheway采纳,获得10
7秒前
脑洞疼应助ontheway采纳,获得10
7秒前
我是老大应助ontheway采纳,获得10
7秒前
香蕉觅云应助ontheway采纳,获得10
7秒前
JamesPei应助ontheway采纳,获得10
7秒前
隐形曼青应助ontheway采纳,获得10
8秒前
乐乐应助ontheway采纳,获得10
8秒前
8秒前
vict完成签到,获得积分10
9秒前
郭敏菲完成签到 ,获得积分10
9秒前
段文天发布了新的文献求助10
9秒前
Wawoo完成签到,获得积分10
10秒前
114555发布了新的文献求助10
12秒前
chentao发布了新的文献求助10
12秒前
FashionBoy应助1111采纳,获得10
12秒前
12秒前
雨落发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655668
求助须知:如何正确求助?哪些是违规求助? 4799897
关于积分的说明 15073450
捐赠科研通 4814035
什么是DOI,文献DOI怎么找? 2575522
邀请新用户注册赠送积分活动 1530862
关于科研通互助平台的介绍 1489554