Deep RED Unfolding Network for Image Restoration

正规化(语言学) 计算机科学 可解释性 人工智能 人工神经网络 算法 深度学习 模式识别(心理学)
作者
Shengjiang Kong,Weiwei Wang,Xiangchu Feng,Xixi Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 852-867 被引量:11
标识
DOI:10.1109/tip.2021.3136623
摘要

The deep unfolding network (DUN) provides an efficient framework for image restoration. It consists of a regularization module and a data fitting module. In existing DUN models, it is common to directly use a deep convolution neural network (DCNN) as the regularization module, and perform data fitting before regularization in each iteration/stage. In this work, we present a DUN by incorporating a new regularization module, and putting the regularization module before the data fitting module. The proposed regularization model is deducted by using the regularization by denoing (RED) and plugging in it a newly designed DCNN. For the data fitting module, we use the closed-form solution with Faster Fourier Transform (FFT). The resulted DRED-DUN model has some major advantages. First, the regularization model inherits the flexibility of learned image-adaptive and interpretability of RED. Second, the DRED-DUN model is an end-to-end trainable DUN, which learns the regularization network and other parameters jointly, thus leads to better restoration performance than the plug-and-play framework. Third, extensive experiments show that, our proposed model significantly outperforms the-state-of-the-art model-based methods and learning based methods in terms of PSNR indexes as well as the visual effects. In particular, our method has much better capability in recovering salient image components such as edges and small scale textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仔仔发布了新的文献求助10
1秒前
糜厉发布了新的文献求助10
1秒前
1秒前
是星星啊发布了新的文献求助10
1秒前
冒险寻羊完成签到,获得积分10
2秒前
yml完成签到,获得积分20
3秒前
3秒前
3秒前
loka完成签到,获得积分10
5秒前
5秒前
CodeCraft应助Doctor-C采纳,获得10
5秒前
gugugu完成签到,获得积分10
5秒前
WWW完成签到,获得积分10
6秒前
bkagyin应助科学实验站采纳,获得10
6秒前
沙发睡不着完成签到,获得积分20
7秒前
是十二呀发布了新的文献求助10
8秒前
王大贵完成签到,获得积分20
9秒前
9秒前
cliche发布了新的文献求助10
9秒前
Hello应助糜厉采纳,获得10
10秒前
橙子abcy发布了新的文献求助10
11秒前
爆米花应助izumi采纳,获得10
11秒前
zhenzhen完成签到,获得积分10
12秒前
开朗寇发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助纳米粒子采纳,获得10
15秒前
16秒前
杜杜发布了新的文献求助30
17秒前
18秒前
俗丨完成签到,获得积分10
18秒前
20秒前
研友_8RaVBZ完成签到,获得积分10
21秒前
21秒前
21秒前
隐形曼青应助杨一采纳,获得10
21秒前
simon完成签到,获得积分10
21秒前
彭于晏应助开朗寇采纳,获得10
22秒前
可爱君发布了新的文献求助10
23秒前
马倩茹发布了新的文献求助10
23秒前
小桃同学完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244106
求助须知:如何正确求助?哪些是违规求助? 2887900
关于积分的说明 8250281
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625975