Deep RED Unfolding Network for Image Restoration

正规化(语言学) 计算机科学 可解释性 人工智能 人工神经网络 算法 深度学习 模式识别(心理学)
作者
Shengjiang Kong,Weiwei Wang,Xiangchu Feng,Xixi Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 852-867 被引量:11
标识
DOI:10.1109/tip.2021.3136623
摘要

The deep unfolding network (DUN) provides an efficient framework for image restoration. It consists of a regularization module and a data fitting module. In existing DUN models, it is common to directly use a deep convolution neural network (DCNN) as the regularization module, and perform data fitting before regularization in each iteration/stage. In this work, we present a DUN by incorporating a new regularization module, and putting the regularization module before the data fitting module. The proposed regularization model is deducted by using the regularization by denoing (RED) and plugging in it a newly designed DCNN. For the data fitting module, we use the closed-form solution with Faster Fourier Transform (FFT). The resulted DRED-DUN model has some major advantages. First, the regularization model inherits the flexibility of learned image-adaptive and interpretability of RED. Second, the DRED-DUN model is an end-to-end trainable DUN, which learns the regularization network and other parameters jointly, thus leads to better restoration performance than the plug-and-play framework. Third, extensive experiments show that, our proposed model significantly outperforms the-state-of-the-art model-based methods and learning based methods in terms of PSNR indexes as well as the visual effects. In particular, our method has much better capability in recovering salient image components such as edges and small scale textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Happyness应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得20
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
无花果应助宋嘉新采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
Happyness应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
丘比特应助liang采纳,获得30
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
Xiaoxiao应助科研通管家采纳,获得10
2秒前
boxi完成签到,获得积分10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
天天快乐应助无限绿旋采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
qiaokizhang完成签到,获得积分10
2秒前
2秒前
2秒前
iNk应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ED应助多喝开开采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
Happyness应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
周辰完成签到,获得积分10
3秒前
Ava应助震震采纳,获得10
3秒前
4秒前
冰糕发布了新的文献求助10
4秒前
lmd完成签到,获得积分10
4秒前
5秒前
贾舒涵发布了新的文献求助10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582