Deep RED Unfolding Network for Image Restoration

正规化(语言学) 计算机科学 可解释性 人工智能 人工神经网络 算法 深度学习 模式识别(心理学)
作者
Shengjiang Kong,Weiwei Wang,Xiangchu Feng,Xixi Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 852-867 被引量:11
标识
DOI:10.1109/tip.2021.3136623
摘要

The deep unfolding network (DUN) provides an efficient framework for image restoration. It consists of a regularization module and a data fitting module. In existing DUN models, it is common to directly use a deep convolution neural network (DCNN) as the regularization module, and perform data fitting before regularization in each iteration/stage. In this work, we present a DUN by incorporating a new regularization module, and putting the regularization module before the data fitting module. The proposed regularization model is deducted by using the regularization by denoing (RED) and plugging in it a newly designed DCNN. For the data fitting module, we use the closed-form solution with Faster Fourier Transform (FFT). The resulted DRED-DUN model has some major advantages. First, the regularization model inherits the flexibility of learned image-adaptive and interpretability of RED. Second, the DRED-DUN model is an end-to-end trainable DUN, which learns the regularization network and other parameters jointly, thus leads to better restoration performance than the plug-and-play framework. Third, extensive experiments show that, our proposed model significantly outperforms the-state-of-the-art model-based methods and learning based methods in terms of PSNR indexes as well as the visual effects. In particular, our method has much better capability in recovering salient image components such as edges and small scale textures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凯发布了新的文献求助10
1秒前
1秒前
小花卷儿发布了新的文献求助10
2秒前
踏实无敌发布了新的文献求助20
2秒前
2秒前
jinjing发布了新的文献求助30
3秒前
3秒前
科研通AI6应助栗子采纳,获得10
4秒前
5秒前
隐形曼青应助PCEEN采纳,获得10
6秒前
安安完成签到,获得积分10
6秒前
干净元菱发布了新的文献求助10
6秒前
空人有情完成签到 ,获得积分10
6秒前
小吴同志发布了新的文献求助10
6秒前
七羽完成签到 ,获得积分10
8秒前
8秒前
8秒前
10秒前
10秒前
tangxinhebaodan完成签到,获得积分10
11秒前
且慢应助dxc采纳,获得150
11秒前
iccv完成签到 ,获得积分10
11秒前
daviy1127发布了新的文献求助10
14秒前
14秒前
小牛发布了新的文献求助10
14秒前
Ava应助盛夏采纳,获得10
15秒前
15秒前
shusen发布了新的文献求助10
16秒前
AAA完成签到,获得积分20
16秒前
张可欣完成签到 ,获得积分10
16秒前
科研通AI2S应助danielsong采纳,获得10
17秒前
歇洛克发布了新的文献求助10
17秒前
17秒前
jj完成签到,获得积分10
18秒前
18秒前
打打应助PAIDAXXXX采纳,获得10
18秒前
天份完成签到,获得积分10
20秒前
乐乐应助小牛采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427