Role of a Pyroptosis-Related lncRNA Signature in Risk Stratification and Immunotherapy of Ovarian Cancer

列线图 上睑下垂 肿瘤科 比例危险模型 医学 免疫系统 卵巢癌 免疫疗法 内科学 生物信息学 生物
作者
Zeyu Zhang,Zhijie Xu,Yuanliang Yan
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:8
标识
DOI:10.3389/fmed.2021.793515
摘要

Background: Pyroptosis is a newly recognized form of cell death. Emerging evidence has suggested the crucial role of long non-coding RNAs (lncRNAs) in the tumorigenesis and progression of ovarian cancer (OC). However, there is still poor understanding of pyroptosis-related lncRNAs in OC. Methods: The TCGA database was accessed for gene expression and clinical data of 377 patients with OC. Two cohorts for training and validation were established by random allocation. Correlation analysis and Cox regression analysis were performed to identify pyroptosis-related lncRNAs and construct a risk model. Results: Six pyroptosis-related lncRNAs were included in the final signature with unfavorable survival data. Subsequent ROC curves showed promising predictive value of patient prognosis. Further multivariate regression analyses confirmed the signature as an independent risk factor in the training (HR: 2.242, 95% CI: 1.598–3.145) and validation (HR: 1.884, 95% CI: 1.204–2.95) cohorts. A signature-based nomogram was also established with a C-index of.684 (95% CI: 0.662–0.705). Involvement of the identified signature in multiple immune-related pathways was revealed by functional analysis. Moreover, the signature was also associated with higher expression of three immune checkpoints (PD-1, B7-H3, and VSIR), suggesting the potential of the signature as an indicator for OC immunotherapies. Conclusion: This study suggests that the identified pyroptosis-related lncRNA signature and signature-based nomogram may serve as methods for risk stratification of OC. The signature is also associated with the tumor immune microenvironment, potentially providing an indicator for patient selection of immunotherapy in OC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真的珠发布了新的文献求助10
1秒前
Echo发布了新的文献求助10
2秒前
乐天发布了新的文献求助10
2秒前
小施完成签到,获得积分10
2秒前
2秒前
陶醉完成签到,获得积分10
3秒前
易哲完成签到 ,获得积分10
3秒前
Yantuobio完成签到,获得积分10
3秒前
疯了半天完成签到,获得积分10
4秒前
4秒前
小耿木木完成签到,获得积分10
5秒前
adam发布了新的文献求助10
5秒前
黎日新完成签到 ,获得积分10
5秒前
第一号加菲猫完成签到,获得积分20
5秒前
5秒前
我是老大应助花開采纳,获得10
6秒前
英俊的铭应助一丢丢采纳,获得10
6秒前
Hao关闭了Hao文献求助
7秒前
大模型应助自由的语柳采纳,获得10
7秒前
iceice发布了新的文献求助10
7秒前
7秒前
南上完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
耿瑶发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
疯狂老马完成签到,获得积分10
10秒前
ying发布了新的文献求助10
10秒前
情木花肆发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
机智若雁完成签到,获得积分20
11秒前
11秒前
小七完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546979
求助须知:如何正确求助?哪些是违规求助? 3123961
关于积分的说明 9357531
捐赠科研通 2822555
什么是DOI,文献DOI怎么找? 1551574
邀请新用户注册赠送积分活动 723561
科研通“疑难数据库(出版商)”最低求助积分说明 713801