AVS-YOLO: Object Detection in Aerial Visual Scene

计算机科学 人工智能 目标检测 计算机视觉 对象(语法) 棱锥(几何) 特征(语言学) 残余物 比例(比率) 过程(计算) 模式识别(心理学) 数学 地理 算法 哲学 操作系统 地图学 语言学 几何学
作者
You Ma,Lin Chai,Lizuo Jin,Yafeng Yu,Jun Yan
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (01) 被引量:13
标识
DOI:10.1142/s0218001422500045
摘要

Difficult object detection and class imbalance in object detection are the two main challenges faced by aerial image object detection. Difficult objects include small objects, objects of scale variation and objects with serious background interference. Class imbalances come from the number of different classes of objects and sampling of positive and negative samples. Due to these challenges, conventional object detection models usually cannot effectively detect objects in aerial images, especially in the balance between network speed and accuracy. In this paper, the YOLOv3 network structure was improved and an object detection method under the aerial visual scene (AVS-YOLO) was proposed. By introducing a type of densely connected feature pyramid strategy, a scale-aware attention module was constructed, considering both residual dense network blocks and the median-frequency-balancing mechanism. On this basis, an algorithm with ideal speed and accuracy for object detection is obtained. To verify the effectiveness of the algorithm, AVS-YOLO and YOLOv3 were both used to test the VisDrone-DET2019 and UAVDT. The experimental results show that the AP of AVS-YOLO increases by 6.22% and 5.09% on the VisDrone2019 and UAVDT datasets, respectively, compared with YOLOv3. In addition, the AP of AVS-YOLO is 1.82% higher than that of YOLOv4 on the VisDrone2019 dataset. In terms of detection speed, AVS-YOLO can process 31.8 frames per second on a single Nvidia GTX 2080Ti GPU, compared with 44.1 frames per second for YOLOv3. Compared with the other one-stage network in the field of object detection, AVS-YOLO currently achieves the state-of-the-art performance with similar calculation amount on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助loaferfdu采纳,获得10
1秒前
楚狂接舆完成签到,获得积分10
1秒前
1秒前
1秒前
自由的沛山完成签到,获得积分10
1秒前
CXS完成签到,获得积分10
3秒前
3秒前
dongguoxia发布了新的文献求助10
4秒前
5秒前
EvelynBai发布了新的文献求助30
5秒前
jayyyyyyy21发布了新的文献求助10
6秒前
长岁完成签到 ,获得积分10
7秒前
fleurs发布了新的文献求助10
7秒前
小海完成签到,获得积分10
8秒前
8秒前
温暖发布了新的文献求助10
11秒前
liuwenjie应助懒羊羊大王采纳,获得10
14秒前
香蕉觅云应助懒羊羊大王采纳,获得10
14秒前
FashionBoy应助bearinlearning采纳,获得30
15秒前
於奎完成签到,获得积分10
15秒前
15秒前
大个应助1111采纳,获得10
17秒前
jayyyyyyy21完成签到,获得积分10
19秒前
19秒前
21秒前
懒羊羊大王完成签到,获得积分10
21秒前
pcf发布了新的文献求助10
22秒前
FashionBoy应助xcodd采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
25秒前
不倦应助科研通管家采纳,获得20
25秒前
25秒前
s2183622应助科研通管家采纳,获得10
25秒前
lgl发布了新的文献求助30
26秒前
rr完成签到,获得积分10
30秒前
科研通AI5应助小熊沙棘汁采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781439
求助须知:如何正确求助?哪些是违规求助? 3326986
关于积分的说明 10229130
捐赠科研通 3041907
什么是DOI,文献DOI怎么找? 1669688
邀请新用户注册赠送积分活动 799214
科研通“疑难数据库(出版商)”最低求助积分说明 758757