亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resilient perimeter control for hyper-congested two-region networks with MFD dynamics

弹性(材料科学) 控制理论(社会学) 控制器(灌溉) 计算机科学 力矩(物理) 控制系统 控制(管理) 控制工程 工程类 人工智能 农学 经典力学 生物 热力学 电气工程 物理
作者
Shengling Gao,Daqing Li,Nan Zheng,Ruiqi Hu,Zhikun She
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:156: 50-75 被引量:19
标识
DOI:10.1016/j.trb.2021.12.003
摘要

Understanding the resilience of transportation networks has received considerable research attention. Nevertheless in the field of network traffic flow control, few control approaches target the mitigation from hyper-congestion, and the control objective has rarely touched the system resilience requirement which focuses on system recovering from hyper-congested state. This paper sheds light on a resilience-oriented network control. We firstly define the traffic resilience as the integral of deviation against optimal state from disturbance generation moment t0 to recovery moment tf. Then, we propose a control method under hyper-congested situations by formulating the analytical problem using a two-reservoir transportation system with parabola-shaped Macroscopic Fundamental Diagrams (MFDs), using phase diagram analysis, attraction region derivation and switched controller design. Afterwards, we evaluate the system resilience performances between two classic perimeter control schemes (constant perimeter control (CPC) and state-feedback control (SFC)) and the proposed resilient control scheme. Results show that proposed controller can ensure the system to recover from hyper-congestion to the optimal state while existing studies failed to recover. This resilience is confirmed in various case study scenarios, e.g., when the level of hyper-congestion is different. More promisingly, the proposed control shows high compatibility with the form of the MFDs, e.g., the recover can be achieved under hysteresis conditions which are common for network-level traffic dynamics. These findings will help to design an intelligent transportation system with enhanced resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助魏欣娜采纳,获得10
11秒前
可爱的函函应助早川采纳,获得10
17秒前
馍夹菜完成签到,获得积分10
17秒前
21秒前
35秒前
Vivian发布了新的文献求助30
40秒前
Fox完成签到,获得积分10
45秒前
科研通AI2S应助魏欣娜采纳,获得10
48秒前
48秒前
维颖完成签到,获得积分10
50秒前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430