Resilient perimeter control for hyper-congested two-region networks with MFD dynamics

弹性(材料科学) 控制理论(社会学) 控制器(灌溉) 计算机科学 力矩(物理) 控制系统 控制(管理) 控制工程 工程类 人工智能 农学 经典力学 生物 热力学 电气工程 物理
作者
Shengling Gao,Daqing Li,Nan Zheng,Ruiqi Hu,Zhikun She
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:156: 50-75 被引量:19
标识
DOI:10.1016/j.trb.2021.12.003
摘要

Understanding the resilience of transportation networks has received considerable research attention. Nevertheless in the field of network traffic flow control, few control approaches target the mitigation from hyper-congestion, and the control objective has rarely touched the system resilience requirement which focuses on system recovering from hyper-congested state. This paper sheds light on a resilience-oriented network control. We firstly define the traffic resilience as the integral of deviation against optimal state from disturbance generation moment t0 to recovery moment tf. Then, we propose a control method under hyper-congested situations by formulating the analytical problem using a two-reservoir transportation system with parabola-shaped Macroscopic Fundamental Diagrams (MFDs), using phase diagram analysis, attraction region derivation and switched controller design. Afterwards, we evaluate the system resilience performances between two classic perimeter control schemes (constant perimeter control (CPC) and state-feedback control (SFC)) and the proposed resilient control scheme. Results show that proposed controller can ensure the system to recover from hyper-congestion to the optimal state while existing studies failed to recover. This resilience is confirmed in various case study scenarios, e.g., when the level of hyper-congestion is different. More promisingly, the proposed control shows high compatibility with the form of the MFDs, e.g., the recover can be achieved under hysteresis conditions which are common for network-level traffic dynamics. These findings will help to design an intelligent transportation system with enhanced resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Song君发布了新的文献求助10
刚刚
允怡发布了新的文献求助10
刚刚
鲜艳的手链完成签到,获得积分10
1秒前
YYY发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
林洁佳完成签到,获得积分10
4秒前
4秒前
风中晓绿发布了新的文献求助30
4秒前
共享精神应助aliao采纳,获得10
4秒前
隔窗听雨发布了新的文献求助10
4秒前
含蓄老太发布了新的文献求助10
5秒前
Jiro完成签到,获得积分10
5秒前
天天玩完成签到,获得积分10
5秒前
无聊的凉面完成签到,获得积分10
6秒前
可爱的函函应助海慕云采纳,获得10
7秒前
7秒前
王一一一一一完成签到,获得积分10
7秒前
8秒前
8秒前
贺飞风发布了新的文献求助10
9秒前
9秒前
yyy完成签到,获得积分20
10秒前
10秒前
DiDi完成签到,获得积分10
10秒前
顾矜应助科研通管家采纳,获得30
10秒前
彭于晏应助科研通管家采纳,获得20
10秒前
丘比特应助科研通管家采纳,获得20
10秒前
鲤鱼鸽子应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
QDU应助科研通管家采纳,获得60
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
鲤鱼鸽子应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
义气莫茗应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671