材料科学
锂(药物)
阴极
离子
化学工程
多孔性
纳米技术
复合材料
化学
电气工程
有机化学
工程类
医学
内分泌学
作者
Xing‐Wen Huang,Song‐Yi Liao,Yue-Zhu Li,Cun-Sheng Liu,Wei‐Xiang Cheng,Chen Zhao,Yizhao Chen,Yidong Liu,Yonggang Min
出处
期刊:Social Science Research Network
[Social Science Electronic Publishing]
日期:2021-01-01
摘要
A novel layered porous organic cathode was designed/fabricated by the utilization of few-layered MXene as matrix to facilitate the electron transport and porous polyimide (PI) as coating to supply lots of active carbonyl groups (shorten as PI@MXene). The bonding structure of the as-synthesized samples was tested by FTIR spectrum. And the existence of few-layered MXene in the samples was confirmed by XRD analysis. Moreover, the surface morphologies of PI@MXene were demonstrated by SEM images. The PI@MXene with 5 wt.% MXene showed the layered structure with porous PI on the surface of few-layered MXene. The EIS spectra verified the PI@5%MXene battery with the low EIS impedances (~42 Ω) owing to the existence of few-layered MXene. Therefore, the PI@5%MXene cell showed a good cycling stability and an excellent rate performance, which was assigned to the enhanced faster Li-ion diffusion and pseudocapacitive effects confirmed by GITT testing and kinetic calculations from the CV curves respectively. Thus, novel layered PI@MXene porous electrode material with fast electron transport, fast Li+ diffusion and enhanced pseudocapacitive effects to supply numerous active carbonyl sites deserved excellent electrochemical performances. This work may provide a promising strategy for the development of high-performance polyimide hybrid electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI