数学
李普希茨连续性
独特性
随机微分方程
应用数学
趋同(经济学)
弱收敛
序列(生物学)
反向欧拉法
欧拉公式
收敛速度
数学分析
状态变量
欧拉方程
钥匙(锁)
物理
遗传学
经济增长
计算机科学
计算机安全
资产(计算机安全)
生物
热力学
经济
生态学
作者
Yun Li,Xuerong Mao,Qingshuo Song,Fuke Wu,George Yin
出处
期刊:Ima Journal of Numerical Analysis
日期:2021-12-23
卷期号:43 (2): 1001-1035
被引量:22
标识
DOI:10.1093/imanum/drab107
摘要
Abstract This paper develops strong convergence of the Euler–Maruyama (EM) schemes for approximating McKean–Vlasov stochastic differential equations (SDEs). In contrast to the existing work, a novel feature is the use of a much weaker condition—local Lipschitzian in the state variable, but under uniform linear growth assumption. To obtain the desired approximation, the paper first establishes the existence and uniqueness of solutions of the original McKean–Vlasov SDE using a Euler-like sequence of interpolations and partition of the sample space. Then, the paper returns to the analysis of the EM scheme for approximating solutions of McKean–Vlasov SDEs. A strong convergence theorem is established. Moreover, the convergence rates under global conditions are obtained.
科研通智能强力驱动
Strongly Powered by AbleSci AI