A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
MMZ发布了新的文献求助30
2秒前
3秒前
jyy发布了新的文献求助10
3秒前
坦率灵槐发布了新的文献求助10
6秒前
weihuiru完成签到,获得积分20
7秒前
piggybunny发布了新的文献求助10
7秒前
科目三应助正道魁首采纳,获得10
7秒前
慕青应助帅气蓝采纳,获得10
8秒前
9秒前
十辰完成签到,获得积分10
9秒前
10秒前
10秒前
12秒前
wuwu完成签到,获得积分10
12秒前
12秒前
777完成签到,获得积分10
12秒前
科研通AI2S应助kiwi采纳,获得10
14秒前
深情安青应助知雨采纳,获得10
14秒前
曹国庆完成签到 ,获得积分10
14秒前
14秒前
maidang发布了新的文献求助10
15秒前
鹿人完成签到,获得积分10
15秒前
15秒前
XZWX完成签到 ,获得积分10
16秒前
欧克欧克完成签到 ,获得积分10
16秒前
smalltarget发布了新的文献求助10
17秒前
qin完成签到,获得积分20
17秒前
涅爹完成签到 ,获得积分10
17秒前
17秒前
18秒前
tjycoder发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
18秒前
科研通AI5应助Parrot_PAI采纳,获得10
20秒前
手残症发布了新的文献求助10
20秒前
帅气蓝发布了新的文献求助10
20秒前
Akim应助长情胡萝卜采纳,获得10
22秒前
吴右西完成签到 ,获得积分20
23秒前
soundwave完成签到,获得积分10
24秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132106
求助须知:如何正确求助?哪些是违规求助? 4333612
关于积分的说明 13501430
捐赠科研通 4170651
什么是DOI,文献DOI怎么找? 2286519
邀请新用户注册赠送积分活动 1287364
关于科研通互助平台的介绍 1228373