A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yu发布了新的文献求助10
1秒前
情怀应助二马三乡采纳,获得10
1秒前
1394980266完成签到,获得积分10
2秒前
Losemisery发布了新的文献求助10
2秒前
221320040完成签到,获得积分10
3秒前
书俭完成签到,获得积分10
3秒前
小蘑菇应助dearsunccc采纳,获得10
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
mry完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助CHANG采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
健壮的面包完成签到,获得积分20
4秒前
4秒前
尊敬的囧关注了科研通微信公众号
5秒前
风筝完成签到,获得积分10
5秒前
大个应助科研通管家采纳,获得30
5秒前
青鸟飞鱼发布了新的文献求助20
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Yolo应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
Tonson应助科研通管家采纳,获得10
6秒前
sonya应助科研通管家采纳,获得10
6秒前
6秒前
黄小皮应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
倪小发布了新的文献求助10
6秒前
PROPELLER发布了新的文献求助10
6秒前
乱步完成签到,获得积分10
6秒前
JamesPei应助李庆采纳,获得10
7秒前
温柔的白风完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481343
求助须知:如何正确求助?哪些是违规求助? 4582305
关于积分的说明 14384747
捐赠科研通 4511013
什么是DOI,文献DOI怎么找? 2472161
邀请新用户注册赠送积分活动 1458514
关于科研通互助平台的介绍 1432064