A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小酒窝周周完成签到 ,获得积分10
1秒前
sameen发布了新的文献求助10
1秒前
VV完成签到,获得积分10
1秒前
张学友完成签到,获得积分10
2秒前
lw发布了新的文献求助10
4秒前
4秒前
5秒前
舸宇发布了新的文献求助10
5秒前
9秒前
10秒前
mj发布了新的文献求助10
11秒前
Hello应助chcmy采纳,获得10
11秒前
11秒前
lz完成签到,获得积分20
12秒前
十八完成签到,获得积分10
13秒前
今后应助潇洒的平松采纳,获得10
13秒前
思源应助wyd采纳,获得10
14秒前
April完成签到,获得积分10
15秒前
mj完成签到,获得积分10
16秒前
大橙子完成签到,获得积分10
17秒前
情怀应助lala采纳,获得10
17秒前
迷龙发布了新的文献求助10
18秒前
ni完成签到,获得积分10
18秒前
19秒前
ataybabdallah完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
YY完成签到,获得积分10
22秒前
22秒前
Clxzzgzg发布了新的文献求助10
23秒前
尽如给尽如的求助进行了留言
25秒前
25秒前
迷龙完成签到,获得积分10
26秒前
Lei发布了新的文献求助10
26秒前
应夏山完成签到 ,获得积分10
27秒前
27秒前
27秒前
华仔应助sameen采纳,获得10
27秒前
灰色的乌完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014