A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zak发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
JamesPei应助shareef采纳,获得10
2秒前
3秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
11秒前
11秒前
晨曦发布了新的文献求助10
11秒前
14秒前
领导范儿应助Skywalker采纳,获得10
17秒前
科研通AI6应助亲爱的Y小姐采纳,获得20
17秒前
陈王发布了新的文献求助10
18秒前
秀丽的犀牛完成签到 ,获得积分10
19秒前
天天快乐应助ayayaya采纳,获得10
20秒前
23秒前
bluebell完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
岚天完成签到,获得积分10
25秒前
27秒前
27秒前
六便士完成签到,获得积分10
28秒前
天天快乐应助zink采纳,获得10
30秒前
31秒前
32秒前
33秒前
yumiao发布了新的文献求助10
33秒前
Weathing完成签到 ,获得积分10
34秒前
35秒前
Skywalker发布了新的文献求助10
35秒前
35秒前
36秒前
小杰发布了新的文献求助100
37秒前
潇洒的绿真完成签到 ,获得积分10
37秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449198
求助须知:如何正确求助?哪些是违规求助? 4557419
关于积分的说明 14263155
捐赠科研通 4480370
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445133
关于科研通互助平台的介绍 1420965