A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
2秒前
588发布了新的文献求助10
2秒前
三杠发布了新的文献求助10
2秒前
3秒前
李小晴天发布了新的文献求助10
5秒前
刘雪磊完成签到,获得积分20
6秒前
6秒前
SciGPT应助nwds采纳,获得10
7秒前
咦yiyi发布了新的文献求助100
9秒前
9秒前
大模型应助坚定灭绝采纳,获得10
10秒前
aaa发布了新的文献求助10
12秒前
自然雁风完成签到,获得积分10
13秒前
我是老大应助百事可乐采纳,获得10
14秒前
健忘捕发布了新的文献求助10
14秒前
Liu_cx完成签到,获得积分10
15秒前
17秒前
18秒前
林新宇完成签到,获得积分10
18秒前
18秒前
OYYO发布了新的文献求助30
18秒前
科研小新发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
李小颜完成签到,获得积分10
24秒前
李健的小迷弟应助东哥采纳,获得10
24秒前
24秒前
刘雪磊发布了新的文献求助10
24秒前
25秒前
26秒前
迷人雪卉完成签到 ,获得积分10
27秒前
VDC发布了新的文献求助10
27秒前
28秒前
杆杆发布了新的文献求助10
28秒前
付一鸣发布了新的文献求助10
29秒前
29秒前
橙橙吖完成签到,获得积分20
31秒前
31秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502002
求助须知:如何正确求助?哪些是违规求助? 4598010
关于积分的说明 14462250
捐赠科研通 4531639
什么是DOI,文献DOI怎么找? 2483444
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496