A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

痴呆 贝叶斯网络 疾病 神经心理学 人口 计算机科学 认知 医学 机器学习 阿尔茨海默病 人工智能 精神科 病理 环境卫生
作者
Flávio Luiz Seixas,Bianca Zadrozny,Jérson Laks,Aura Conci,Débora Christina Muchaluat Saade
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:51: 140-158 被引量:152
标识
DOI:10.1016/j.compbiomed.2014.04.010
摘要

Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永远55度完成签到,获得积分10
1秒前
2秒前
波安班发布了新的文献求助10
2秒前
白山发布了新的文献求助10
2秒前
3秒前
找回大衣完成签到,获得积分10
4秒前
comm发布了新的文献求助10
5秒前
5秒前
萝卜的666发布了新的文献求助10
6秒前
ldc发布了新的文献求助10
6秒前
科研通AI2S应助蛋挞好好吃采纳,获得10
8秒前
云小澈发布了新的文献求助10
8秒前
黎明前完成签到,获得积分10
9秒前
9秒前
顾矜应助大炮不慌张采纳,获得10
9秒前
10秒前
无花果应助梅川库子采纳,获得10
10秒前
10秒前
10秒前
fu完成签到,获得积分10
10秒前
拉长的芷烟完成签到 ,获得积分10
11秒前
11秒前
12秒前
SciGPT应助蒸汽秋葵X采纳,获得10
12秒前
丘比特应助乐观蚂蚁采纳,获得10
12秒前
ZYX发布了新的文献求助10
13秒前
falcon发布了新的文献求助10
14秒前
英俊的铭应助乐乐采纳,获得10
16秒前
zw完成签到,获得积分10
17秒前
xie发布了新的文献求助10
17秒前
18秒前
852应助stdbot采纳,获得10
18秒前
lll应助靖柔采纳,获得20
18秒前
believe完成签到,获得积分10
19秒前
朱婷完成签到,获得积分20
19秒前
科目二三次郎完成签到,获得积分10
20秒前
ZMJ困困ZJY完成签到,获得积分10
20秒前
研友_LjDyNZ完成签到,获得积分10
20秒前
LLL发布了新的文献求助30
20秒前
无辜丹秋完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296947
求助须知:如何正确求助?哪些是违规求助? 4445951
关于积分的说明 13837832
捐赠科研通 4331031
什么是DOI,文献DOI怎么找? 2377382
邀请新用户注册赠送积分活动 1372652
关于科研通互助平台的介绍 1338217