An investigation of the El Niño‐Southern Oscillation cycle With statistical models: 1. Predictor field characteristics

分歧(语言学) 气候学 经验正交函数 地质学 太平洋十年振荡 太平洋 海面温度 典型相关 领域(数学) 气象学 地理 海洋学 数学 统计 哲学 语言学 纯数学
作者
Nicholas E. Graham,Joel Michaelsen,T. P. Barnett
出处
期刊:Journal of Geophysical Research [Wiley]
卷期号:92 (C13): 14251-14270 被引量:131
标识
DOI:10.1029/jc092ic13p14251
摘要

We have developed two sets of linear models for predicting equatorial Pacific sea surface temperatures (SSTs) from the Indo‐Pacific trade wind field and the near‐global sea level pressure (SLP) field. The models were constructed using a combination of extended empirical orthogonal functions (EEOFs) and canonical correlation analysis (CCA), a new approach in geophysical modeling. Our results are of interest both as they show the dominant modes of evolution in the SLP and wind fields through the El Niño‐Southern Oscillation cycle and with respect to the problem of predicting equatorial SSTs. This paper deals with the first issue above and describes some statistical composites that typify the development of features in the predictor fields over periods of years. The results of the EEOF analyses clearly show slowly propagating anomalies in both the near‐global SLP and trade wind fields. The CCA analysis, which highlights the co‐evolution of the two fields, suggests a strong coupling between the two and depicts the anomalous features as migrating centers of divergence and convergence that first appear over the eastern Indian Ocean. These features propagate slowly eastward, amplify as they expand into the western Pacific, decline as they cross the central ocean, then reamplify over the eastern Pacific. As reamplification takes place, new opposing anomalies appear in the Indo‐Pacific. Descriptions of the predictor data sets and details of the statistical techniques used may also be found in this paper. The SST data, model validation techniques, and forecast model results are presented in a companion paper (Graham et al., this issue).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尘雾完成签到,获得积分10
1秒前
澜生发布了新的文献求助10
2秒前
leekle完成签到,获得积分10
3秒前
shengChen发布了新的文献求助10
3秒前
自信鞯发布了新的文献求助10
4秒前
江北小赵完成签到,获得积分10
4秒前
4秒前
4秒前
clock完成签到 ,获得积分10
4秒前
虫二先生完成签到 ,获得积分10
4秒前
甜甜的难敌完成签到,获得积分10
5秒前
5秒前
6秒前
小潘同学完成签到,获得积分10
6秒前
6秒前
科研通AI5应助传统的海露采纳,获得10
7秒前
学术刘亦菲完成签到,获得积分10
7秒前
成就的烧鹅完成签到,获得积分20
7秒前
8秒前
dd发布了新的文献求助10
8秒前
luoshi应助leon采纳,获得30
9秒前
9秒前
wang完成签到,获得积分10
9秒前
可爱的函函应助hu采纳,获得10
9秒前
9秒前
我测你码关注了科研通微信公众号
10秒前
下课了吧发布了新的文献求助10
10秒前
jy发布了新的文献求助10
10秒前
绘梨衣完成签到,获得积分10
11秒前
数据线完成签到,获得积分10
11秒前
完美世界应助甜甜的难敌采纳,获得30
12秒前
满堂花醉三千客完成签到 ,获得积分10
12秒前
12秒前
12秒前
gao完成签到,获得积分10
13秒前
LiuRuizhe完成签到,获得积分10
13秒前
绘梨衣发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794