An investigation of the El Niño‐Southern Oscillation cycle With statistical models: 1. Predictor field characteristics

分歧(语言学) 气候学 经验正交函数 地质学 太平洋十年振荡 太平洋 海面温度 典型相关 领域(数学) 气象学 地理 海洋学 数学 统计 哲学 语言学 纯数学
作者
Nicholas E. Graham,Joel Michaelsen,T. P. Barnett
出处
期刊:Journal of Geophysical Research [American Geophysical Union]
卷期号:92 (C13): 14251-14270 被引量:131
标识
DOI:10.1029/jc092ic13p14251
摘要

We have developed two sets of linear models for predicting equatorial Pacific sea surface temperatures (SSTs) from the Indo‐Pacific trade wind field and the near‐global sea level pressure (SLP) field. The models were constructed using a combination of extended empirical orthogonal functions (EEOFs) and canonical correlation analysis (CCA), a new approach in geophysical modeling. Our results are of interest both as they show the dominant modes of evolution in the SLP and wind fields through the El Niño‐Southern Oscillation cycle and with respect to the problem of predicting equatorial SSTs. This paper deals with the first issue above and describes some statistical composites that typify the development of features in the predictor fields over periods of years. The results of the EEOF analyses clearly show slowly propagating anomalies in both the near‐global SLP and trade wind fields. The CCA analysis, which highlights the co‐evolution of the two fields, suggests a strong coupling between the two and depicts the anomalous features as migrating centers of divergence and convergence that first appear over the eastern Indian Ocean. These features propagate slowly eastward, amplify as they expand into the western Pacific, decline as they cross the central ocean, then reamplify over the eastern Pacific. As reamplification takes place, new opposing anomalies appear in the Indo‐Pacific. Descriptions of the predictor data sets and details of the statistical techniques used may also be found in this paper. The SST data, model validation techniques, and forecast model results are presented in a companion paper (Graham et al., this issue).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助张许昂采纳,获得10
刚刚
星辰大海应助张许昂采纳,获得10
刚刚
浮游应助张许昂采纳,获得10
刚刚
黑犬完成签到,获得积分10
刚刚
汉堡包应助张许昂采纳,获得10
刚刚
南屿完成签到,获得积分20
1秒前
辛勤的管道工完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
852应助樱桃汽水采纳,获得10
3秒前
bmxi发布了新的文献求助10
3秒前
nana发布了新的文献求助10
3秒前
王桑完成签到 ,获得积分10
3秒前
Chanyl完成签到,获得积分20
4秒前
哈哈哈发布了新的文献求助10
5秒前
suandlin完成签到 ,获得积分20
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
340881发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
Ava应助科研通管家采纳,获得10
7秒前
abc123发布了新的文献求助10
7秒前
小杭76应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
liu应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883932
求助须知:如何正确求助?哪些是违规求助? 4169303
关于积分的说明 12936993
捐赠科研通 3929666
什么是DOI,文献DOI怎么找? 2156202
邀请新用户注册赠送积分活动 1174631
关于科研通互助平台的介绍 1079423