Principal Component Analysis of Gamma-Ray Spectra for Radiation Portal Monitors

主成分分析 算法 计算机科学 中子 辐射 核材料 异常检测 规范(哲学) 物理 数据挖掘 核物理学 人工智能 政治学 法学
作者
D. I. Boardman,Mark I. Reinhard,Alison Flynn
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:59 (1): 154-160 被引量:34
标识
DOI:10.1109/tns.2011.2179313
摘要

The scanning of cargo for radiological and nuclear material is vital in detecting the illicit trafficking of such materials. The deployment of technologies such as Radiation Portal Monitors (RPMs) has enabled screening for the presence of gamma and neutron emitting radionuclides. Although the development of radionuclide detection algorithms is vital to the development of RPMs, only a small amount of the work exists in the published literature. This paper describes the development of an anomalous signature detection algorithm based on Principal Component Analysis (PCA). PCA involves the eigen decomposition of the correlation matrix of a training data set. The distance of an unknown observed spectrum from Naturally Occurring Radioactive Materials (NORM), in a 14 dimensional space, was used to assess the algorithm performance. The PCA algorithm showed an excellent 'anomaly detection' performance for a number of threat sources including Special Nuclear Materials (SNM's). The PCA algorithm has also demonstrated an improved performance over that of a commercially available peak search algorithm. The discrimination of the SNM's sources, from the NORM, consistently improved with increased counts, which is not always true for peak search based algorithms. The algorithm also performed well in count starved spectra, which is of relevance to border security applications of RPMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助shinn采纳,获得10
刚刚
后陡门的butterfly完成签到,获得积分10
1秒前
科研通AI2S应助tian采纳,获得10
2秒前
Owen应助tian采纳,获得10
2秒前
科研通AI5应助医者修心采纳,获得10
3秒前
3秒前
濮阳冰海发布了新的文献求助10
5秒前
华仔应助大笨鹅之家采纳,获得10
5秒前
笑点低的远望完成签到,获得积分10
8秒前
8秒前
8秒前
天天快乐应助安静的瑾瑜采纳,获得10
9秒前
10秒前
14秒前
14秒前
田様应助Yanan采纳,获得10
17秒前
隐形曼青应助幸福冰珍采纳,获得10
17秒前
科研通AI5应助博修采纳,获得10
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
mzone发布了新的文献求助10
20秒前
科研通AI5应助安沐采纳,获得10
20秒前
20秒前
MIMI完成签到,获得积分10
20秒前
CucRuotThua完成签到,获得积分10
21秒前
怕孤单的幻枫完成签到 ,获得积分10
21秒前
22秒前
平淡灭绝发布了新的文献求助10
23秒前
hoongyan完成签到 ,获得积分10
23秒前
浅浅发布了新的文献求助10
24秒前
Tonsil01发布了新的文献求助10
24秒前
24秒前
程实发布了新的文献求助10
24秒前
充电宝应助shinn采纳,获得10
25秒前
彭于晏应助过时的冬易采纳,获得30
25秒前
U9A发布了新的文献求助10
25秒前
孝陵卫黑旋风完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578