土壤学
重新造林
物种丰富度
生态学
生物
农林复合经营
生物量(生态学)
土壤生物学
生物多样性
土壤水分
作者
Nan Hui,Xinxin Liu,Ari Jumpponen,Heikki Setälä,D. Johan Kotze,Liliya Biktasheva,Martin Romantschuk
出处
期刊:Plant and Soil
[Springer Science+Business Media]
日期:2018-04-14
卷期号:427 (1-2): 231-244
被引量:26
标识
DOI:10.1007/s11104-018-3647-0
摘要
Although soil-inhabiting fungi can affect tree health and biomass production in managed and pristine forests, little is known about the sensitivity of the plant-fungal associations to long-term changes in land use. We aimed to investigate how reforestation of farmlands change soil characteristics and affected the recovery of soil fungal functional guilds. We examined edaphic conditions and fungal communities (Illumina Sequencing) in three land-use types: primary forests (PF), secondary forests (SF, established over two decades ago) and active farmlands during May, July and September in Wuying, China. Edaphic conditions and general fungal communities varied with land-use. Interestingly, overall fungal diversity was higher in soils at the farmland than at the forested sites, possibly as a result of recurring disturbances (tilling) allowing competitive release as described by the intermediate disturbance hypothesis. Although ectomycorrhizal fungal diversity and richness were marginally higher in PF than in SF, the latter still hosted surprisingly diverse and abundant ectomycorrhizal fungal communities. Reforestation largely restored fungal communities that were still in transition, as their composition in SF was distinct from that in PF. Our results highlight the ability of fungi grown in previously strongly managed agricultural land to rapidly respond to reforestation and thus provide support for forest trees.
科研通智能强力驱动
Strongly Powered by AbleSci AI