亚热带
环境科学
富营养化
空间变异性
大气科学
甲烷
水文学(农业)
自然地理学
气候学
地理
地质学
生态学
营养物
统计
数学
岩土工程
生物
作者
Qitao Xiao,Mi Zhang,Zhenghua Hu,Yunqiu Gao,Cheng Hu,Cheng Liu,Shoudong Liu,Zhen Zhang,Jiayu Zhao,Wei Xiao,Xuhui Lee
摘要
Subtropical lakes are important source of atmospheric methane (CH4). This study aims to investigate spatial variations of CH4 flux in Lake Taihu, a large (area 2400 km2) and shallow (mean depth 1.9 m) eutrophic lake in Eastern China. The lake exhibited high spatial variations in pollution level, macrophyte vegetation abundance, and algal growth. We measured the diffusion CH4 flux via the transfer coefficient method across the whole lake. In addition, data obtained with the flux gradient and the eddy covariance methods were used in conjunction with the data on the diffusion flux to estimate the contribution by ebullition. Results from 3 years' measurements indicated high spatial variabilities in the diffusion CH4 flux. The spatial pattern of the diffusion CH4 emission was correlated with water clarity, dissolved oxygen concentration, and the spatial distributions of algal and submerged vegetation. In comparison to the transfer coefficient method, the eddy covariance and the flux gradient method observed a lake CH4 flux that was 3.39 ± 0.58 (mean ± 1 standard deviation) and 1.95 ± 0.36 times higher in an open-water eutrophic zone and in a habitat of submerged macrophytes, respectively. The result implied an average of 71% and 49% ebullition contribution to the total CH4 flux in the two zones. The annual mean diffusion CH4 flux of the whole lake was 0.54 ± 0.30 g m−2 yr−1. Our CH4 emission data suggest that the average CH4 emission reported previously for lakes in Eastern China was overestimated.
科研通智能强力驱动
Strongly Powered by AbleSci AI