Application of the EnKF method for real-time forecasting of smoke movement during tunnel fires

数据同化 集合卡尔曼滤波器 可预测性 烟雾 环境科学 模拟 计算机科学 工程类 卡尔曼滤波器 气象学 扩展卡尔曼滤波器 物理 人工智能 数学 统计
作者
Jie Ji,Qi Tong,Liangzhu Wang,Cheng-Chun Lin,Cong Zhang,Zihe Gao,Jun Fang
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:115: 398-412 被引量:19
标识
DOI:10.1016/j.advengsoft.2017.10.007
摘要

Abstract Real-time prediction of smoke layer temperature and height of tunnel fires are crucial in guiding emergency rescue. However, current fire simulation tools are often not able to provide reliable modeling results due to poorly known input parameters and model errors. Besides, fire modeling are subject to computer resources, for instance, fire modeling by computational fluid dynamics (CFD) tools is often time-consuming. Moreover, sensors located in tunnels can only detect certain physical quantities within a certain level of uncertainties. In order to gain more reliable predictions of temperature and smoke layer height of tunnel fires in real time, a proposed method, inverse modeling based on Ensemble Kalman Filter (EnKF), is presented in this study to improve the predictability and address problems of demanding computer resources of tunnel fire simulation by doing data assimilation. The basic formulas of EnKF method are introduced and the application of EnKF to tunnel fires is implemented by connecting the fire simulation tool, CFAST, with a data assimilation software, OpenDA. In current study, observation data are generated under the framework of Observation System Simulation Experiment (OSSE), i.e., synthetic observations are generated by CFAST simulation assuming true value of control parameters are known. Studies are conducted to show the feasibility of real-time predicting smoke movement during tunnel fires. Results show that prediction performance are improved after applying the EnKF method compared to the standalone tunnel fires modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJF发布了新的文献求助10
刚刚
Ava应助呆呆采纳,获得10
4秒前
笨笨猪完成签到,获得积分10
7秒前
jjy发布了新的文献求助10
7秒前
7秒前
32完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助WJF采纳,获得10
10秒前
小二郎应助夕荀采纳,获得10
11秒前
SY完成签到,获得积分10
11秒前
11秒前
13秒前
GXC753完成签到,获得积分10
13秒前
he完成签到 ,获得积分10
14秒前
FashionBoy应助DQ采纳,获得10
15秒前
17秒前
17秒前
19秒前
要增肥的樱完成签到,获得积分10
19秒前
19秒前
丘比特应助ccmxigua采纳,获得10
19秒前
20秒前
21秒前
英姑应助醉熏的百合采纳,获得10
21秒前
lxsll发布了新的文献求助10
24秒前
24秒前
hh发布了新的文献求助10
24秒前
呆呆发布了新的文献求助10
24秒前
扶苏小雨发布了新的文献求助30
25秒前
acffo完成签到 ,获得积分10
27秒前
Jasper应助要增肥的樱采纳,获得10
27秒前
28秒前
30秒前
30秒前
DQ发布了新的文献求助10
32秒前
宿雨发布了新的文献求助10
34秒前
小暴完成签到,获得积分10
34秒前
35秒前
35秒前
扶苏小雨完成签到,获得积分20
35秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212626
求助须知:如何正确求助?哪些是违规求助? 2861602
关于积分的说明 8129412
捐赠科研通 2527603
什么是DOI,文献DOI怎么找? 1361312
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615776