归一化差异植被指数
扩展卡尔曼滤波器
卡尔曼滤波器
系列(地层学)
颗粒过滤器
时间序列
非线性系统
线性化
土地覆盖
植被(病理学)
状态空间表示
数学
环境科学
控制理论(社会学)
计算机科学
统计
算法
气候变化
工程类
地质学
物理
人工智能
土木工程
病理
古生物学
海洋学
医学
控制(管理)
量子力学
土地利用
作者
Srija Chakraborty,Ayan Banerjee,Sandeep K. S. Gupta,Antonia Papandreou‐Suppappola,P. R. Christensen
标识
DOI:10.1109/igarss.2017.8127146
摘要
Normalized Difference Vegetation Index (NDVI) time series is used to study different land cover dynamics such as change, compare vegetation dynamics between years and analyze intra-annual components. A nonlinear cosine model of the NDVI time series with a constant frequency is used to account for the time-varying nature of the land cover parameters due to seasonality or change. The Extended Kalman Filter (EKF) is used to estimate these parameters, which introduces linearization and negatively impacts the state estimation accuracy. This paper proposes using a Particle Filter (PF) for state estimation to better address nonlinearity in the model. The cosine model is modified to capture frequency variations to account for changes in the vegetation growth cycle caused by abrupt phenomenon such as forest fires. PF obtains better state estimates than EKF, capturing the intra-annual components and time-varying frequency of the model accurately.
科研通智能强力驱动
Strongly Powered by AbleSci AI