Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

医学 糖尿病性视网膜病变 糖尿病 青光眼 眼科 视网膜病变 黄斑变性 验光服务 视网膜 人工智能 计算机科学 内分泌学
作者
Daniel Shu Wei Ting,Carol Y. Cheung,Gilbert Lim,Gavin Siew Wei Tan,Duc Quang Nguyen,Alfred Tau Liang Gan,Haslina Hamzah,Renata García-Franco,Ian Yeo,Shu Yen Lee,Edmund Yick Mun Wong,Charumathi Sabanayagam,Mani Baskaran,Farah Ibrahim,Ngiap Chuan Tan,Eric Finkelstein,Ecosse L. Lamoureux,Yhi Wong,Neil M. Bressler,Sobha Sivaprasad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2211-2211 被引量:1889
标识
DOI:10.1001/jama.2017.18152
摘要

Importance

A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.

Objective

To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.

Design, Setting, and Participants

Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.

Exposures

Use of a deep learning system.

Main Outcomes and Measures

Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.

Results

In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).

Conclusions and Relevance

In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林结衣完成签到,获得积分10
1秒前
完美世界应助热情大树采纳,获得10
2秒前
yyy完成签到 ,获得积分10
2秒前
3秒前
lmg发布了新的文献求助10
3秒前
SYLH应助cc采纳,获得10
3秒前
梦想完成签到,获得积分20
4秒前
4秒前
qq158014169完成签到 ,获得积分10
4秒前
4秒前
深情安青应助DamenS采纳,获得10
4秒前
我是老大应助DamenS采纳,获得10
5秒前
Ava应助DamenS采纳,获得10
5秒前
orixero应助DamenS采纳,获得10
5秒前
思源应助DamenS采纳,获得10
5秒前
fan完成签到,获得积分10
6秒前
打打应助小杨采纳,获得10
6秒前
zokor完成签到 ,获得积分0
7秒前
九龙飞翔完成签到,获得积分10
8秒前
yookia应助koukou采纳,获得10
8秒前
8秒前
lh发布了新的文献求助10
10秒前
阳光的雁易完成签到,获得积分10
11秒前
研友_VZG7GZ应助DamenS采纳,获得10
12秒前
CodeCraft应助DamenS采纳,获得10
12秒前
万能图书馆应助DamenS采纳,获得10
12秒前
慕青应助DamenS采纳,获得10
12秒前
顾矜应助DamenS采纳,获得10
12秒前
慕青应助DamenS采纳,获得10
12秒前
脑洞疼应助DamenS采纳,获得10
12秒前
Jasper应助DamenS采纳,获得10
12秒前
共享精神应助DamenS采纳,获得10
12秒前
wanci应助DamenS采纳,获得10
12秒前
GGGG发布了新的文献求助20
13秒前
14秒前
共享精神应助Baihanyu采纳,获得10
14秒前
忧郁豆芽发布了新的文献求助10
15秒前
16秒前
小萝卜完成签到,获得积分10
17秒前
忧郁书双完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651