已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

医学 糖尿病性视网膜病变 糖尿病 青光眼 眼科 视网膜病变 黄斑变性 验光服务 视网膜 人工智能 计算机科学 内分泌学
作者
Daniel Shu Wei Ting,Carol Y. Cheung,Gilbert Lim,Gavin Siew Wei Tan,Duc Quang Nguyen,Alfred Tau Liang Gan,Haslina Hamzah,Renata García-Franco,Ian Yeo,Shu Yen Lee,Edmund Yick Mun Wong,Charumathi Sabanayagam,Mani Baskaran,Farah Ibrahim,Ngiap Chuan Tan,Eric Finkelstein,Ecosse L. Lamoureux,Yhi Wong,Neil M. Bressler,Sobha Sivaprasad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2211-2211 被引量:1965
标识
DOI:10.1001/jama.2017.18152
摘要

Importance

A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.

Objective

To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.

Design, Setting, and Participants

Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.

Exposures

Use of a deep learning system.

Main Outcomes and Measures

Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.

Results

In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).

Conclusions and Relevance

In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
俏皮的安萱完成签到 ,获得积分10
2秒前
仰勒完成签到 ,获得积分10
3秒前
Li完成签到,获得积分10
5秒前
春衫发布了新的文献求助10
5秒前
笨蛋没烦恼完成签到,获得积分10
5秒前
精明尔芙敏完成签到 ,获得积分10
7秒前
SciGPT应助春衫采纳,获得10
9秒前
Sean完成签到,获得积分10
9秒前
9秒前
邱乐乐发布了新的文献求助10
13秒前
天天快乐应助一只蚂蚁采纳,获得10
17秒前
春衫完成签到,获得积分10
17秒前
18秒前
liu关闭了liu文献求助
19秒前
天天快乐应助zz采纳,获得10
21秒前
葡吉发布了新的文献求助10
21秒前
健康的小鸽子完成签到 ,获得积分10
22秒前
24秒前
孤芳自赏IrisKing完成签到 ,获得积分10
27秒前
28秒前
28秒前
瓜瓜发布了新的文献求助10
34秒前
奋进的熊完成签到,获得积分10
35秒前
36秒前
若为雄才完成签到,获得积分10
38秒前
英姑应助瓜瓜采纳,获得20
42秒前
oleskarabach完成签到,获得积分20
43秒前
葡吉完成签到,获得积分10
45秒前
48秒前
52秒前
郭欣茹发布了新的文献求助10
52秒前
wsc完成签到 ,获得积分10
54秒前
邱乐乐发布了新的文献求助10
55秒前
书山有路勤为劲完成签到 ,获得积分10
56秒前
wyy发布了新的文献求助10
57秒前
梁海萍发布了新的文献求助10
58秒前
瓜瓜完成签到,获得积分20
58秒前
59秒前
1128发布了新的文献求助10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209852
求助须知:如何正确求助?哪些是违规求助? 4386958
关于积分的说明 13662002
捐赠科研通 4246451
什么是DOI,文献DOI怎么找? 2329737
邀请新用户注册赠送积分活动 1327489
关于科研通互助平台的介绍 1279915