清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

医学 糖尿病性视网膜病变 糖尿病 青光眼 眼科 视网膜病变 黄斑变性 验光服务 视网膜 人工智能 计算机科学 内分泌学
作者
Daniel Shu Wei Ting,Carol Y. Cheung,Gilbert Lim,Gavin Siew Wei Tan,Duc Quang Nguyen,Alfred Tau Liang Gan,Haslina Hamzah,Renata García-Franco,Ian Yeo,Shu Yen Lee,Edmund Yick Mun Wong,Charumathi Sabanayagam,Mani Baskaran,Farah Ibrahim,Ngiap Chuan Tan,Eric Finkelstein,Ecosse L. Lamoureux,Yhi Wong,Neil M. Bressler,Sobha Sivaprasad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2211-2211 被引量:1965
标识
DOI:10.1001/jama.2017.18152
摘要

Importance

A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.

Objective

To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.

Design, Setting, and Participants

Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.

Exposures

Use of a deep learning system.

Main Outcomes and Measures

Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.

Results

In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).

Conclusions and Relevance

In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uupp完成签到,获得积分10
4秒前
郭磊完成签到 ,获得积分10
17秒前
赘婿应助whynot采纳,获得10
23秒前
29秒前
whynot发布了新的文献求助10
34秒前
39秒前
Orange应助whynot采纳,获得10
44秒前
xiaoblue完成签到,获得积分10
1分钟前
1分钟前
whynot发布了新的文献求助10
1分钟前
华仔应助whynot采纳,获得10
1分钟前
1分钟前
1分钟前
Chloe完成签到,获得积分10
1分钟前
科研通AI6应助xixi采纳,获得10
2分钟前
2分钟前
whynot发布了新的文献求助10
2分钟前
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
celinewu完成签到,获得积分10
3分钟前
xixi完成签到,获得积分20
3分钟前
xixi发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
3分钟前
CRUSADER发布了新的文献求助10
3分钟前
合不着完成签到 ,获得积分10
3分钟前
CRUSADER完成签到,获得积分10
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Jayzie完成签到 ,获得积分10
5分钟前
5分钟前
www发布了新的文献求助30
5分钟前
灵巧的以亦完成签到 ,获得积分10
5分钟前
充电宝应助www采纳,获得10
6分钟前
kmzzy完成签到,获得积分10
6分钟前
kklkimo发布了新的文献求助10
6分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
Ava应助kklkimo采纳,获得10
6分钟前
Lucas应助whynot采纳,获得10
6分钟前
whynot完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314337
求助须知:如何正确求助?哪些是违规求助? 4457467
关于积分的说明 13867877
捐赠科研通 4346638
什么是DOI,文献DOI怎么找? 2387254
邀请新用户注册赠送积分活动 1381408
关于科研通互助平台的介绍 1350365