亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

医学 糖尿病性视网膜病变 糖尿病 青光眼 眼科 视网膜病变 黄斑变性 验光服务 视网膜 人工智能 计算机科学 内分泌学
作者
Daniel Shu Wei Ting,Carol Y. Cheung,Gilbert Lim,Gavin Siew Wei Tan,Duc Quang Nguyen,Alfred Tau Liang Gan,Haslina Hamzah,Renata García-Franco,Ian Yeo,Shu Yen Lee,Edmund Yick Mun Wong,Charumathi Sabanayagam,Mani Baskaran,Farah Ibrahim,Ngiap Chuan Tan,Eric Finkelstein,Ecosse L. Lamoureux,Yhi Wong,Neil M. Bressler,Sobha Sivaprasad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2211-2211 被引量:1965
标识
DOI:10.1001/jama.2017.18152
摘要

Importance

A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases.

Objective

To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes.

Design, Setting, and Participants

Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes.

Exposures

Use of a deep learning system.

Main Outcomes and Measures

Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard.

Results

In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images).

Conclusions and Relevance

In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助HYX采纳,获得10
30秒前
41秒前
HYX完成签到,获得积分10
43秒前
48秒前
1分钟前
HYX发布了新的文献求助10
1分钟前
顾矜应助HYX采纳,获得10
1分钟前
2分钟前
沉默御姐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
yangshu发布了新的文献求助10
2分钟前
3分钟前
3分钟前
HYX发布了新的文献求助10
3分钟前
Suraim完成签到,获得积分10
3分钟前
闻巷雨完成签到 ,获得积分10
3分钟前
李爱国应助luo1采纳,获得10
3分钟前
二十一发布了新的文献求助10
3分钟前
Alisha完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
二十一完成签到,获得积分10
4分钟前
DFS发布了新的文献求助10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
DFS完成签到,获得积分10
4分钟前
自觉问梅发布了新的文献求助10
4分钟前
自觉问梅完成签到,获得积分10
4分钟前
zpli完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
梅思寒完成签到 ,获得积分10
5分钟前
5分钟前
XingRang发布了新的文献求助10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
科研通AI5应助XingRang采纳,获得10
6分钟前
伊叶之丘完成签到 ,获得积分10
6分钟前
6分钟前
唐泽雪穗发布了新的文献求助70
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078338
求助须知:如何正确求助?哪些是违规求助? 4297112
关于积分的说明 13387869
捐赠科研通 4119800
什么是DOI,文献DOI怎么找? 2256288
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194176