Extracting urban functional regions from points of interest and human activities on location‐based social networks

潜在Dirichlet分配 聚类分析 主题模型 兴趣点 专题地图 计算机科学 地理 德劳内三角测量 数据挖掘 人气 地图学 情报检索 数据科学 人工智能 社会心理学 心理学 算法
作者
Song Gao,Krzysztof Janowicz,Helen Couclelis
出处
期刊:Transactions in Gis [Wiley]
卷期号:21 (3): 446-467 被引量:365
标识
DOI:10.1111/tgis.12289
摘要

Abstract Data about points of interest (POI) have been widely used in studying urban land use types and for sensing human behavior. However, it is difficult to quantify the correct mix or the spatial relations among different POI types indicative of specific urban functions. In this research, we develop a statistical framework to help discover semantically meaningful topics and functional regions based on the co‐occurrence patterns of POI types. The framework applies the latent Dirichlet allocation (LDA) topic modeling technique and incorporates user check‐in activities on location‐based social networks. Using a large corpus of about 100,000 Foursquare venues and user check‐in behavior in the 10 most populated urban areas of the US, we demonstrate the effectiveness of our proposed methodology by identifying distinctive types of latent topics and, further, by extracting urban functional regions using K‐means clustering and Delaunay triangulation spatial constraints clustering. We show that a region can support multiple functions but with different probabilities, while the same type of functional region can span multiple geographically non‐adjacent locations. Since each region can be modeled as a vector consisting of multinomial topic distributions, similar regions with regard to their thematic topic signatures can be identified. Compared with remote sensing images which mainly uncover the physical landscape of urban environments, our popularity‐based POI topic modeling approach can be seen as a complementary social sensing view on urban space based on human activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭黄发布了新的文献求助10
刚刚
西瓜发布了新的文献求助10
刚刚
Ll发布了新的文献求助10
刚刚
刚刚
wcy关注了科研通微信公众号
刚刚
1秒前
1秒前
CipherSage应助爱喝冰可乐采纳,获得10
2秒前
2秒前
bdvdsrwteges完成签到,获得积分10
2秒前
鱼雷完成签到,获得积分10
3秒前
3秒前
天天快乐应助喜洋洋采纳,获得10
3秒前
PANSIXUAN完成签到 ,获得积分10
4秒前
善良香岚发布了新的文献求助10
4秒前
4秒前
huizi完成签到,获得积分20
4秒前
RichardZ完成签到,获得积分10
4秒前
4秒前
左左发布了新的文献求助10
5秒前
执着的怜寒应助哈哈哈haha采纳,获得40
5秒前
Cassie完成签到 ,获得积分10
6秒前
6秒前
雄i完成签到,获得积分10
6秒前
Chenly完成签到,获得积分10
7秒前
科目三应助韭黄采纳,获得10
7秒前
7秒前
轻松笙发布了新的文献求助10
7秒前
9秒前
9秒前
a1oft发布了新的文献求助10
10秒前
觅桃乌龙完成签到,获得积分10
10秒前
11秒前
melodyezi发布了新的文献求助10
12秒前
12秒前
FFFFFFF应助柚子采纳,获得10
12秒前
9℃发布了新的文献求助10
12秒前
MailkMonk发布了新的文献求助10
12秒前
ZQ完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759