Extracting urban functional regions from points of interest and human activities on location‐based social networks

潜在Dirichlet分配 聚类分析 主题模型 兴趣点 专题地图 计算机科学 地理 德劳内三角测量 数据挖掘 人气 地图学 情报检索 数据科学 人工智能 社会心理学 心理学 算法
作者
Song Gao,Krzysztof Janowicz,Helen Couclelis
出处
期刊:Transactions in Gis [Wiley]
卷期号:21 (3): 446-467 被引量:365
标识
DOI:10.1111/tgis.12289
摘要

Abstract Data about points of interest (POI) have been widely used in studying urban land use types and for sensing human behavior. However, it is difficult to quantify the correct mix or the spatial relations among different POI types indicative of specific urban functions. In this research, we develop a statistical framework to help discover semantically meaningful topics and functional regions based on the co‐occurrence patterns of POI types. The framework applies the latent Dirichlet allocation (LDA) topic modeling technique and incorporates user check‐in activities on location‐based social networks. Using a large corpus of about 100,000 Foursquare venues and user check‐in behavior in the 10 most populated urban areas of the US, we demonstrate the effectiveness of our proposed methodology by identifying distinctive types of latent topics and, further, by extracting urban functional regions using K‐means clustering and Delaunay triangulation spatial constraints clustering. We show that a region can support multiple functions but with different probabilities, while the same type of functional region can span multiple geographically non‐adjacent locations. Since each region can be modeled as a vector consisting of multinomial topic distributions, similar regions with regard to their thematic topic signatures can be identified. Compared with remote sensing images which mainly uncover the physical landscape of urban environments, our popularity‐based POI topic modeling approach can be seen as a complementary social sensing view on urban space based on human activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助绿兔子采纳,获得10
1秒前
追寻又柔完成签到 ,获得积分10
3秒前
小二郎应助bofu采纳,获得10
6秒前
无花果应助struggling2026采纳,获得10
6秒前
宣仰完成签到,获得积分10
7秒前
老程完成签到,获得积分10
7秒前
梨花酒应助马马马采纳,获得10
7秒前
爆米花应助湖月照我影采纳,获得10
7秒前
8秒前
华仔应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
txm应助科研通管家采纳,获得20
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
小奕应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
11秒前
做科研的小赵完成签到,获得积分10
13秒前
13秒前
科目三应助感动钥匙采纳,获得10
13秒前
13秒前
Hello应助bofu采纳,获得10
13秒前
14秒前
呆萌安萱完成签到,获得积分10
14秒前
潇洒飞丹发布了新的文献求助30
14秒前
研友_08ozgZ完成签到,获得积分10
14秒前
李健应助Gauze采纳,获得10
14秒前
柯一一应助一根藤采纳,获得10
16秒前
16秒前
16秒前
17秒前
CipherSage应助武雨寒采纳,获得10
17秒前
gaberella完成签到,获得积分10
17秒前
虚幻初之发布了新的文献求助10
18秒前
cindy发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105