等离子体子
人工光合作用
化学
光催化
等离子纳米粒子
电子转移
电子
纳米颗粒
氧化还原
光化学
激发态
激发
催化作用
胶体金
电子激发
化学物理
纳米技术
光电子学
原子物理学
材料科学
离子
物理
无机化学
有机化学
量子力学
生物化学
作者
Youngsoo Kim,Jeremy G. Smith,Prashant K. Jain
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2018-05-03
卷期号:10 (7): 763-769
被引量:315
标识
DOI:10.1038/s41557-018-0054-3
摘要
Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO2 reduction to other challenging multi-electron, multi-proton transformations such as N2 fixation.
科研通智能强力驱动
Strongly Powered by AbleSci AI