数学
投影(关系代数)
计算机科学
维数(图论)
歧管(流体力学)
降维
歧管对齐
足够的尺寸缩减
还原(数学)
拓扑(电路)
算法
非线性降维
数学分析
纯数学
人工智能
几何学
组合数学
机械工程
工程类
作者
Leland McInnes,John J. Healy
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:6255
标识
DOI:10.48550/arxiv.1802.03426
摘要
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI