Combining Polynomial Chaos Expansions and Kriging

克里金 多项式混沌 混沌(操作系统) 数学 多项式的 应用数学 环境科学 统计物理学 统计 计算机科学 数学分析 物理 蒙特卡罗方法 计算机安全
作者
Roland Schöbi,Pierric Kersaudy,Bruno Sudret,Joe Wiart
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:6
摘要

Computer simulation has emerged as a key tool for designing and assessing engineering systems in the last two decades. Uncertainty quantification has become popular more recently as a way to model all the uncertainties affecting the system and their impact onto its performance. In this respect meta-models (a.k.a. surrogate models) have gained interest. Indeed dealing with uncertainties requires running the computer model many times, which may not be affordable for complex models. Surrogate models mimic the behaviour of the original model while being cheap to evaluate. Polynomial chaos expansion (PCE) and Kriging are two popular techniques, which have been developed with very little interaction so far. In this report we present a new approach, called PC-Kriging, that combines the two tools. The algorithm is based on the universal Kriging model where the trend is represented by a set or orthonormal polynomials. Various aspects of the new metamodelling technique are presented and investigated in details. The discussion starts with a survey on methods for generating an optimal design of experiments (DOE). The PC-Kriging algorithm inherits many parameters and sub-methods such as the number of polynomial terms and the choice of the autocorrelation kernel. A variety of kernels are presented and discussed. The methods are compared on analytical benchmark functions. The conclusion of this report is that PC-Kriging performs better or at least as well as PCE or Kriging taken separately in terms of relative generalized error (L2-error).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Rita采纳,获得10
刚刚
1秒前
充电宝应助湖月照我影采纳,获得10
2秒前
zz完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
英俊的铭应助超级的鹅采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
千跃应助科研通管家采纳,获得10
5秒前
jing应助科研通管家采纳,获得20
5秒前
大个应助科研通管家采纳,获得10
5秒前
张雷应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
千跃应助科研通管家采纳,获得20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Rita应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
思源应助七七采纳,获得10
7秒前
7秒前
李玲玲发布了新的文献求助10
7秒前
8秒前
9秒前
zz发布了新的文献求助10
9秒前
DHMO完成签到,获得积分10
9秒前
9秒前
Akim应助Jotaro采纳,获得10
10秒前
10秒前
司空豁发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105