Combining Polynomial Chaos Expansions and Kriging

克里金 多项式混沌 混沌(操作系统) 数学 多项式的 应用数学 环境科学 统计物理学 统计 计算机科学 数学分析 物理 蒙特卡罗方法 计算机安全
作者
Roland Schöbi,Pierric Kersaudy,Bruno Sudret,Joe Wiart
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:6
摘要

Computer simulation has emerged as a key tool for designing and assessing engineering systems in the last two decades. Uncertainty quantification has become popular more recently as a way to model all the uncertainties affecting the system and their impact onto its performance. In this respect meta-models (a.k.a. surrogate models) have gained interest. Indeed dealing with uncertainties requires running the computer model many times, which may not be affordable for complex models. Surrogate models mimic the behaviour of the original model while being cheap to evaluate. Polynomial chaos expansion (PCE) and Kriging are two popular techniques, which have been developed with very little interaction so far. In this report we present a new approach, called PC-Kriging, that combines the two tools. The algorithm is based on the universal Kriging model where the trend is represented by a set or orthonormal polynomials. Various aspects of the new metamodelling technique are presented and investigated in details. The discussion starts with a survey on methods for generating an optimal design of experiments (DOE). The PC-Kriging algorithm inherits many parameters and sub-methods such as the number of polynomial terms and the choice of the autocorrelation kernel. A variety of kernels are presented and discussed. The methods are compared on analytical benchmark functions. The conclusion of this report is that PC-Kriging performs better or at least as well as PCE or Kriging taken separately in terms of relative generalized error (L2-error).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
浮浮沉沉发布了新的文献求助10
2秒前
脑洞疼应助李洪晔采纳,获得10
4秒前
隐形曼青应助真知灼见采纳,获得10
4秒前
5秒前
小左发布了新的文献求助10
6秒前
sakurai发布了新的文献求助30
6秒前
星辰大海应助揽星色采纳,获得10
7秒前
7秒前
媛媛子完成签到,获得积分10
9秒前
斯文败类应助王富贵采纳,获得10
10秒前
11秒前
yiyi完成签到,获得积分10
12秒前
tingting发布了新的文献求助10
12秒前
clxxf发布了新的文献求助10
12秒前
12秒前
13秒前
852应助月亮是甜的采纳,获得10
14秒前
蔡琪完成签到,获得积分10
15秒前
16秒前
酷波er应助卡皮巴拉采纳,获得10
16秒前
李洪晔发布了新的文献求助10
16秒前
橙子fy16_发布了新的文献求助10
16秒前
17秒前
19秒前
jdio完成签到,获得积分10
19秒前
20秒前
调味罐完成签到 ,获得积分10
21秒前
~~发布了新的文献求助10
22秒前
小蘑菇应助橙子fy16_采纳,获得10
22秒前
龟龟完成签到 ,获得积分10
23秒前
三金发布了新的文献求助10
23秒前
Math123关注了科研通微信公众号
24秒前
25秒前
26秒前
26秒前
李健应助花凉采纳,获得10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644