Molecular Modeling, Docking, Dynamics and Simulation of Gefitinib and its Derivatives with EGFR in Non-small Cell Lung Cancer

吉非替尼 表皮生长因子受体 表皮生长因子受体抑制剂 肺癌 对接(动物) 癌症研究 虚拟筛选 化学 分子动力学 细胞生长 细胞 药理学 生物化学 受体 肿瘤科 医学 计算化学 护理部
作者
Pulakuntla Swetha Reddy,Kiran Bharat Lokhande,Shuchi Nagar,Vaddi Damodara Reddy,P. Sushma Murthy,K. Venkateswara Swamy
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:14 (3): 246-252 被引量:24
标识
DOI:10.2174/1573409914666180228111433
摘要

Gefitinib (lressa) is the most prescribed drug, highly effective to treat nonsmall cell lung cancer; primarily it was considered that targeted therapy is a kinase inhibitor. The nonsmall cell lung cancer is caused by mutation in the Epithelial Growth Factor Receptor (EGFR) gene. Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer.To explore the interaction between Gefitinib and its derivatives with crystal structure of EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation was obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening was carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR were done using GROMACS 5.1.1 software to explore the interaction stability in a cell.The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signaling in non-small cell lung cancer.These result suggested a computer-aided screening approach of Gefitinib derivatives with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿1完成签到,获得积分10
刚刚
小红帽发布了新的文献求助10
刚刚
勤奋完成签到,获得积分0
1秒前
乐乐应助小淘采纳,获得10
1秒前
2秒前
小马过河发布了新的文献求助10
2秒前
3秒前
所所应助zhanglin采纳,获得10
3秒前
Hello应助hao123采纳,获得10
3秒前
lllll完成签到,获得积分10
4秒前
科研通AI5应助ZYP采纳,获得10
4秒前
冷静的觅松完成签到,获得积分10
4秒前
Ja完成签到,获得积分10
4秒前
俭朴新之完成签到 ,获得积分10
5秒前
SYLH应助淋漓尽致采纳,获得20
5秒前
Solitude完成签到,获得积分10
5秒前
华仔应助wxy采纳,获得10
6秒前
疯狂的醉蝶完成签到,获得积分10
6秒前
6秒前
7秒前
wym完成签到,获得积分20
7秒前
雪山完成签到,获得积分10
7秒前
8秒前
8秒前
秋秋完成签到,获得积分10
8秒前
戏言121完成签到,获得积分10
8秒前
Solitude发布了新的文献求助10
9秒前
行7发布了新的文献求助10
9秒前
多情的续完成签到,获得积分10
10秒前
10秒前
shirley发布了新的文献求助10
11秒前
NexusExplorer应助123采纳,获得10
11秒前
烟花应助chen采纳,获得10
11秒前
11秒前
Gloyu发布了新的文献求助10
11秒前
薰衣草发布了新的文献求助10
12秒前
秋慕蕊发布了新的文献求助10
12秒前
浪里白条完成签到,获得积分10
12秒前
whole发布了新的文献求助10
12秒前
大爱仙尊完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271808
关于积分的说明 9973811
捐赠科研通 2987155
什么是DOI,文献DOI怎么找? 1638750
邀请新用户注册赠送积分活动 778259
科研通“疑难数据库(出版商)”最低求助积分说明 747549