Unraveling the cause-effect relation between time series

因果关系(物理学) 因果关系 推论 系列(地层学) 关系(数据库) 数学 多样性(控制论) 计量经济学 自相关 统计物理学 应用数学 计算机科学 统计 纯数学 物理 地质学 认识论 数据挖掘 哲学 量子力学 古生物学
作者
X. San Liang
出处
期刊:Physical Review E [American Physical Society]
卷期号:90 (5) 被引量:316
标识
DOI:10.1103/physreve.90.052150
摘要

Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion, namely, information flow, we solve an inverse problem and give this important and challenging question, which is of interest in a wide variety of disciplines, a positive answer. Here causality is measured by the time rate of information flowing from one series to the other. The resulting formula is tight in form, involving only commonly used statistics, namely, sample covariances; an immediate corollary is that causation implies correlation, but correlation does not imply causation. It has been validated with touchstone linear and nonlinear series, purportedly generated with one-way causality that evades the traditional approaches. It has also been applied successfully to the investigation of real-world problems; an example presented here is the cause-and-effect relation between the two climate modes, El Niño and the Indian Ocean Dipole (IOD), which have been linked to hazards in far-flung regions of the globe. In general, the two modes are mutually causal, but the causality is asymmetric: El Niño tends to stabilize IOD, while IOD functions to make El Niño more uncertain. To El Niño, the information flowing from IOD manifests itself as a propagation of uncertainty from the Indian Ocean.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
金鱼咕噜噜luu完成签到,获得积分10
4秒前
4秒前
CY完成签到,获得积分10
5秒前
体贴汽车发布了新的文献求助10
5秒前
Rutin发布了新的文献求助10
6秒前
性静H情逸发布了新的文献求助10
7秒前
荀冰姬发布了新的文献求助10
8秒前
Hello应助keyanfentouzhe采纳,获得10
8秒前
顾矜应助buxiangshangxue采纳,获得10
9秒前
orixero应助Jenny采纳,获得10
10秒前
Owen应助ding采纳,获得50
12秒前
酷波er应助追寻大有采纳,获得10
14秒前
14秒前
打打应助图图采纳,获得10
14秒前
15秒前
臭臭完成签到,获得积分20
16秒前
科研通AI5应助细心语堂采纳,获得10
16秒前
荀冰姬完成签到,获得积分10
17秒前
17秒前
王sir完成签到,获得积分10
17秒前
xzg111完成签到,获得积分10
20秒前
念姬给念姬的求助进行了留言
20秒前
20秒前
阿胡完成签到 ,获得积分20
21秒前
闪闪凝梦完成签到 ,获得积分10
21秒前
ToTmmm发布了新的文献求助10
21秒前
李健应助HJX采纳,获得10
22秒前
22秒前
任性的梦菲完成签到,获得积分10
22秒前
蕾娜完成签到,获得积分20
23秒前
23秒前
蕾娜发布了新的文献求助10
27秒前
28秒前
30秒前
30秒前
lvlv发布了新的文献求助10
30秒前
彭于晏应助haha采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488