Unraveling the cause-effect relation between time series

因果关系(物理学) 因果关系 推论 系列(地层学) 关系(数据库) 数学 多样性(控制论) 计量经济学 自相关 统计物理学 应用数学 计算机科学 统计 纯数学 物理 地质学 认识论 数据挖掘 哲学 量子力学 古生物学
作者
X. San Liang
出处
期刊:Physical Review E [American Physical Society]
卷期号:90 (5) 被引量:316
标识
DOI:10.1103/physreve.90.052150
摘要

Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Based on a recently rigorized physical notion, namely, information flow, we solve an inverse problem and give this important and challenging question, which is of interest in a wide variety of disciplines, a positive answer. Here causality is measured by the time rate of information flowing from one series to the other. The resulting formula is tight in form, involving only commonly used statistics, namely, sample covariances; an immediate corollary is that causation implies correlation, but correlation does not imply causation. It has been validated with touchstone linear and nonlinear series, purportedly generated with one-way causality that evades the traditional approaches. It has also been applied successfully to the investigation of real-world problems; an example presented here is the cause-and-effect relation between the two climate modes, El Niño and the Indian Ocean Dipole (IOD), which have been linked to hazards in far-flung regions of the globe. In general, the two modes are mutually causal, but the causality is asymmetric: El Niño tends to stabilize IOD, while IOD functions to make El Niño more uncertain. To El Niño, the information flowing from IOD manifests itself as a propagation of uncertainty from the Indian Ocean.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏樱完成签到,获得积分10
1秒前
饭团的老父亲完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
红叶完成签到,获得积分10
4秒前
斯文败类应助99采纳,获得10
4秒前
初心完成签到 ,获得积分10
5秒前
5秒前
niuniu顺利毕业完成签到 ,获得积分10
7秒前
甜蜜的荟完成签到,获得积分10
8秒前
CLY发布了新的文献求助10
8秒前
aa完成签到,获得积分10
8秒前
11秒前
聪明小丸子完成签到,获得积分10
11秒前
时尚中二完成签到,获得积分10
14秒前
燕燕完成签到,获得积分10
15秒前
爱笑的千寻完成签到,获得积分10
15秒前
一个小胖子完成签到,获得积分10
16秒前
zxt完成签到,获得积分10
18秒前
18秒前
甜甜圈完成签到 ,获得积分10
18秒前
kehe完成签到 ,获得积分10
18秒前
fuluyuzhe_668完成签到,获得积分10
19秒前
叶颤发布了新的文献求助20
19秒前
量子星尘发布了新的文献求助10
20秒前
Alex完成签到,获得积分10
20秒前
win完成签到 ,获得积分10
20秒前
田様应助大饼饼饼采纳,获得30
21秒前
吴旭东发布了新的文献求助10
22秒前
花卷完成签到,获得积分10
22秒前
熬夜波比应助yydy采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
小杨完成签到,获得积分10
23秒前
九号机完成签到 ,获得积分10
24秒前
淡定白枫完成签到,获得积分10
24秒前
kehe!完成签到 ,获得积分0
24秒前
luo完成签到 ,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071