亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development

基因 生物 微阵列分析技术 基因表达 计算生物学 微阵列 基因表达谱 生物信息学 遗传学
作者
Matteo Giulietti,Giulia Occhipinti,Giovanni Principato,Francesco Piva
出处
期刊:Cellular oncology [Springer Nature]
卷期号:39 (4): 379-388 被引量:92
标识
DOI:10.1007/s13402-016-0283-7
摘要

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Up till now, the patient’s prognosis remains poor which, among others, is due to the paucity of reliable early diagnostic biomarkers. In the past, candidate diagnostic biomarkers and therapeutic targets have been delineated from genes that were found to be differentially expressed in normal versus tumour samples. Recently, new systems biology approaches have been developed to analyse gene expression data, which may yield new biomarkers. As of yet, the weighted gene co-expression network analysis (WGCNA) tool has not been applied to PDAC microarray-based gene expression data. PDAC microarray-based gene expression datasets, listed in the Gene Expression Omnibus (GEO) database, were analysed. After pre-processing of the data, we built two final datasets, Normal and PDAC, encompassing 104 and 129 patient samples, respectively. Next, we constructed a weighted gene co-expression network and identified modules of co-expressed genes distinguishing normal from disease conditions. Functional annotations of the genes in these modules were carried out to highlight PDAC-associated molecular pathways and common regulatory mechanisms. Finally, overall survival analyses were carried out to assess the suitability of the genes identified as prognostic biomarkers. Using WGCNA, we identified several key genes that may play important roles in PDAC. These genes are mainly related to either endoplasmic reticulum, mitochondrion or membrane functions, exhibit transferase or hydrolase activities and are involved in biological processes such as lipid metabolism or transmembrane transport. As a validation of the applied method, we found that some of the identified key genes (CEACAM1, MCU, VDAC1, CYCS, C15ORF52, TMEM51, LARP1 and ERLIN2) have previously been reported by others as potential PDAC biomarkers. Using overall survival analyses, we found that several of the newly identified genes may serve as biomarkers to stratify PDAC patients into low- and high-risk groups. Using this new systems biology approach, we identified several genes that appear to be critical to PDAC development. As such, they may represent potential diagnostic biomarkers as well as therapeutic targets with clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
无情莫英完成签到,获得积分20
13秒前
16秒前
17秒前
白桦林泪发布了新的文献求助10
21秒前
无花果应助白桦林泪采纳,获得20
27秒前
科研通AI5应助无情莫英采纳,获得30
46秒前
58秒前
1分钟前
木鸽子发布了新的文献求助10
1分钟前
木鸽子完成签到,获得积分10
1分钟前
1分钟前
Lucas应助mixieer采纳,获得10
1分钟前
李豆豆发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Diss发布了新的文献求助10
2分钟前
科研通AI5应助Diss采纳,获得10
2分钟前
3分钟前
白桦林泪发布了新的文献求助20
3分钟前
3分钟前
Winner完成签到,获得积分10
3分钟前
3分钟前
mixieer完成签到,获得积分10
3分钟前
mixieer发布了新的文献求助10
3分钟前
小狮子完成签到,获得积分10
3分钟前
4分钟前
林鹏达发布了新的文献求助10
4分钟前
向近完成签到 ,获得积分10
4分钟前
铜锣湾新之助完成签到 ,获得积分10
4分钟前
浦肯野应助janice采纳,获得10
4分钟前
小狮子发布了新的文献求助10
4分钟前
4分钟前
阿泽发布了新的文献求助10
4分钟前
bkagyin应助白桦林泪采纳,获得10
4分钟前
善学以致用应助小狮子采纳,获得10
4分钟前
5分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550224
求助须知:如何正确求助?哪些是违规求助? 3126627
关于积分的说明 9369468
捐赠科研通 2825662
什么是DOI,文献DOI怎么找? 1553371
邀请新用户注册赠送积分活动 724846
科研通“疑难数据库(出版商)”最低求助积分说明 714438