颂歌
离散化
有限元法
笛卡尔坐标系
直线法
常微分方程
数学
偏微分方程
解算器
数学分析
抛物型偏微分方程
接口(物质)
边值问题
抛物线柱坐标
应用数学
计算机科学
微分方程
数学优化
几何学
抛物柱函数
物理
微分代数方程
气泡
并行计算
最大气泡压力法
热力学
作者
Tao Lin,Yanping Lin,Xu Zhang
出处
期刊:Advances in Applied Mathematics and Mechanics
[Global Science Press]
日期:2013-08-01
卷期号:5 (04): 548-568
被引量:46
标识
DOI:10.4208/aamm.13-13s11
摘要
Abstract This article extends the finite element method of lines to a parabolic initial boundary value problem whose diffusion coefficient is discontinuous across an interface that changes with respect to time. The method presented here uses immersed finite element (IFE) functions for the discretization in spatial variables that can be carried out over a fixed mesh (such as a Cartesian mesh if desired), and this feature makes it possible to reduce the parabolic equation to a system of ordinary differential equations (ODE) through the usual semi-discretization procedure. Therefore, with a suitable choice of the ODE solver, this method can reliably and efficiently solve a parabolic moving interface problem over a fixed structured (Cartesian) mesh. Numerical examples are presented to demonstrate features of this new method.
科研通智能强力驱动
Strongly Powered by AbleSci AI