Infrared and Raman Spectroscopy of Liquid Water through “First-Principles” Many-Body Molecular Dynamics

极化率 分子动力学 偶极子 拉曼光谱 红外光谱学 统计物理学 量子 化学 化学物理 势能 红外线的 光谱学 计算化学 分子物理学 物理 分子 原子物理学 量子力学
作者
Gregory R. Medders,Francesco Paesani
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:11 (3): 1145-1154 被引量:222
标识
DOI:10.1021/ct501131j
摘要

Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠熠完成签到,获得积分10
1秒前
wangping发布了新的文献求助10
1秒前
李爱国应助小豆芽儿采纳,获得10
1秒前
2秒前
2秒前
FFF完成签到,获得积分20
3秒前
学术小黄完成签到,获得积分10
3秒前
么系么系发布了新的文献求助10
3秒前
4秒前
小洪俊熙完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
SYLH应助di采纳,获得10
5秒前
5秒前
柒毛完成签到 ,获得积分10
6秒前
搜集达人应助tatata采纳,获得20
6秒前
英俊的铭应助诚c采纳,获得10
6秒前
兔子完成签到 ,获得积分10
6秒前
6秒前
苹果巧蕊完成签到 ,获得积分10
6秒前
脑洞疼应助SDS采纳,获得10
6秒前
JamesPei应助Guo采纳,获得20
7秒前
马保国123完成签到,获得积分10
7秒前
7秒前
7秒前
迷你的冰巧完成签到,获得积分10
7秒前
万能图书馆应助学术蝗虫采纳,获得10
8秒前
慕青应助aurora采纳,获得30
8秒前
Jasper应助满意的盼夏采纳,获得10
8秒前
yitang完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
zhenzhen发布了新的文献求助10
10秒前
飞羽发布了新的文献求助10
10秒前
江沅完成签到 ,获得积分10
10秒前
11秒前
11秒前
Sean完成签到,获得积分10
11秒前
兜兜完成签到 ,获得积分10
11秒前
羊羊羊发布了新的文献求助10
12秒前
Rui完成签到,获得积分10
12秒前
bigger.b完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678