Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach

嗅球 计算机科学 人工智能 模式识别(心理学) 人工神经网络 机器学习 神经科学 心理学 中枢神经系统
作者
Matthew Murphy,Alexander John Poplawsky,Alberto L. Vazquez,Kevin C. Chan,Seong‐Gi Kim,Mitsuhiro Fukuda
出处
期刊:NeuroImage [Elsevier BV]
卷期号:137: 1-8 被引量:6
标识
DOI:10.1016/j.neuroimage.2016.05.055
摘要

Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小学生完成签到 ,获得积分10
刚刚
刚刚
3秒前
puyehwu发布了新的文献求助10
5秒前
小肖发布了新的文献求助50
6秒前
刘可乐发布了新的文献求助30
7秒前
酷波er应助Brave采纳,获得10
8秒前
9秒前
无聊的土豆完成签到 ,获得积分10
10秒前
longzhongque发布了新的文献求助10
11秒前
12秒前
puyehwu完成签到,获得积分10
12秒前
勤恳的语蓉完成签到,获得积分10
13秒前
yeyeye完成签到 ,获得积分10
14秒前
后浪完成签到 ,获得积分10
16秒前
16秒前
16秒前
QOP应助落寞的代萱采纳,获得10
17秒前
19秒前
tes完成签到,获得积分10
20秒前
Z2WWS32发布了新的文献求助10
21秒前
22秒前
22秒前
一贤完成签到,获得积分10
22秒前
24秒前
24秒前
英姑应助VDC采纳,获得10
25秒前
楚阔完成签到,获得积分10
26秒前
FashionBoy应助liu采纳,获得10
26秒前
思源应助Z2WWS32采纳,获得20
28秒前
项南风发布了新的文献求助10
28秒前
晚晴发布了新的文献求助10
29秒前
Parotodus发布了新的文献求助10
29秒前
30秒前
眯眯眼的世界完成签到,获得积分10
30秒前
32秒前
longzhongque关注了科研通微信公众号
33秒前
慕青应助魁梧的盼雁采纳,获得10
33秒前
科目三应助晚晴采纳,获得10
34秒前
qiqi发布了新的文献求助50
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669843
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9774958
捐赠科研通 2937434
什么是DOI,文献DOI怎么找? 1609349
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765