已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Content Screening for Quantitative Cell Biology

高含量筛选 仿形(计算机编程) 计算生物学 生物 计算机科学 管道(软件) 软件 图像处理 图像分析 人工智能 图像(数学) 数字图像处理 遗传学 细胞 程序设计语言 操作系统
作者
Mojca Mattiazzi Ušaj,Erin B. Styles,Adrian J. Verster,Helena Friesen,Charles Boone,Brenda Andrews
出处
期刊:Trends in Cell Biology [Elsevier]
卷期号:26 (8): 598-611 被引量:264
标识
DOI:10.1016/j.tcb.2016.03.008
摘要

HCS combines automated microscopy with quantitative image analysis. Recent hardware advances and innovations in software for automated image analysis now allow researchers to rapidly screen and analyze hundreds of thousands of images. In contrast to early analysis of high-throughput imaging data, which often involved testing for deviation of a single parameter, machine learning, both supervised and unsupervised, allows high-dimensional data analysis. The image analysis pipeline must be designed simultaneously with the development of the biological assay. HCS has been used to identify genes and activities required for a specific biological process and in various disease models, to identify proteome-wide changes in response to chemical or genetic perturbations, and in chemical and genetic profiling. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助李dabao采纳,获得10
刚刚
2秒前
pariscxl完成签到,获得积分10
3秒前
枝头树上的布谷鸟完成签到 ,获得积分10
3秒前
耍酷的鹰完成签到,获得积分10
6秒前
杨忆锋发布了新的文献求助10
6秒前
小黄不熬夜完成签到 ,获得积分10
6秒前
7秒前
10秒前
呆萌井完成签到,获得积分10
12秒前
nipanpan发布了新的文献求助10
13秒前
皮代谷完成签到,获得积分10
14秒前
17秒前
羞涩的寒松完成签到,获得积分10
17秒前
小冉完成签到 ,获得积分10
18秒前
Zeno完成签到 ,获得积分10
23秒前
LIU完成签到 ,获得积分10
26秒前
26秒前
脆弱小虾米完成签到 ,获得积分20
28秒前
TS发布了新的文献求助20
31秒前
刘言发布了新的文献求助10
31秒前
CipherSage应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
35秒前
lky应助科研通管家采纳,获得10
35秒前
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
filter发布了新的文献求助30
37秒前
39秒前
39秒前
YingxueRen完成签到,获得积分10
43秒前
刘言完成签到,获得积分20
43秒前
默默发布了新的文献求助10
43秒前
哥斯拉爱吃猪血糕完成签到,获得积分10
44秒前
一二三四完成签到 ,获得积分10
45秒前
Zheyuan完成签到,获得积分10
46秒前
47秒前
小摩尔完成签到 ,获得积分10
50秒前
nipanpan完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714043
求助须知:如何正确求助?哪些是违规求助? 5220045
关于积分的说明 15272610
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612231
邀请新用户注册赠送积分活动 1562407
关于科研通互助平台的介绍 1519591