High-Content Screening for Quantitative Cell Biology

高含量筛选 仿形(计算机编程) 计算生物学 生物 计算机科学 管道(软件) 软件 图像处理 图像分析 人工智能 图像(数学) 数字图像处理 遗传学 细胞 程序设计语言 操作系统
作者
Mojca Mattiazzi Ušaj,Erin B. Styles,Adrian J. Verster,Helena Friesen,Charles Boone,Brenda Andrews
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:26 (8): 598-611 被引量:264
标识
DOI:10.1016/j.tcb.2016.03.008
摘要

HCS combines automated microscopy with quantitative image analysis. Recent hardware advances and innovations in software for automated image analysis now allow researchers to rapidly screen and analyze hundreds of thousands of images. In contrast to early analysis of high-throughput imaging data, which often involved testing for deviation of a single parameter, machine learning, both supervised and unsupervised, allows high-dimensional data analysis. The image analysis pipeline must be designed simultaneously with the development of the biological assay. HCS has been used to identify genes and activities required for a specific biological process and in various disease models, to identify proteome-wide changes in response to chemical or genetic perturbations, and in chemical and genetic profiling. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助kai采纳,获得10
刚刚
刚刚
科研通AI5应助pfshan采纳,获得10
1秒前
多多完成签到 ,获得积分10
1秒前
1秒前
薯条完成签到,获得积分10
1秒前
acetdw发布了新的文献求助10
2秒前
参也完成签到 ,获得积分10
2秒前
3秒前
JamesPei应助2641490618采纳,获得10
4秒前
流子完成签到,获得积分10
5秒前
6秒前
6秒前
韩明姝发布了新的文献求助10
7秒前
Shirley发布了新的文献求助20
7秒前
舒服的井发布了新的文献求助200
8秒前
orixero应助lanchong采纳,获得10
9秒前
荼蘼如雪发布了新的文献求助10
9秒前
9秒前
曹先生完成签到,获得积分10
10秒前
Felix0917发布了新的文献求助10
10秒前
王乐安完成签到,获得积分10
10秒前
10秒前
asder发布了新的文献求助200
13秒前
yees完成签到,获得积分20
14秒前
太Crazy辣给太Crazy辣的求助进行了留言
14秒前
manto发布了新的文献求助10
14秒前
木子完成签到,获得积分10
14秒前
14秒前
荼蘼如雪完成签到,获得积分10
15秒前
bin完成签到,获得积分10
15秒前
Bio应助22采纳,获得30
15秒前
15秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
16秒前
lxc发布了新的文献求助10
16秒前
Yancy发布了新的文献求助10
17秒前
18秒前
科研通AI6应助yees采纳,获得10
18秒前
无花果应助keeee采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331