High-Content Screening for Quantitative Cell Biology

高含量筛选 仿形(计算机编程) 计算生物学 生物 计算机科学 管道(软件) 软件 图像处理 图像分析 人工智能 图像(数学) 数字图像处理 遗传学 细胞 操作系统 程序设计语言
作者
Mojca Mattiazzi Ušaj,Erin B. Styles,Adrian J. Verster,Helena Friesen,Charles Boone,Brenda Andrews
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:26 (8): 598-611 被引量:264
标识
DOI:10.1016/j.tcb.2016.03.008
摘要

HCS combines automated microscopy with quantitative image analysis. Recent hardware advances and innovations in software for automated image analysis now allow researchers to rapidly screen and analyze hundreds of thousands of images. In contrast to early analysis of high-throughput imaging data, which often involved testing for deviation of a single parameter, machine learning, both supervised and unsupervised, allows high-dimensional data analysis. The image analysis pipeline must be designed simultaneously with the development of the biological assay. HCS has been used to identify genes and activities required for a specific biological process and in various disease models, to identify proteome-wide changes in response to chemical or genetic perturbations, and in chemical and genetic profiling. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Evelyn完成签到 ,获得积分10
刚刚
3秒前
3秒前
4秒前
5秒前
开朗元槐发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
ding应助刻苦的士萧采纳,获得10
6秒前
科研通AI5应助英俊白莲采纳,获得30
7秒前
科研通AI5应助笑面客采纳,获得10
8秒前
8秒前
免疫与代谢研究完成签到,获得积分10
9秒前
weddcf发布了新的文献求助10
9秒前
9秒前
venger发布了新的文献求助10
10秒前
10秒前
wanci应助可yi采纳,获得10
10秒前
DZ发布了新的文献求助10
10秒前
11秒前
11秒前
sijin1216完成签到,获得积分10
11秒前
青春完成签到 ,获得积分10
12秒前
oo关注了科研通微信公众号
14秒前
烟花应助yema采纳,获得10
14秒前
14秒前
gaberella发布了新的文献求助10
15秒前
君君发布了新的文献求助10
15秒前
ikea1984发布了新的文献求助10
16秒前
852应助微笑采纳,获得10
16秒前
情怀应助微笑采纳,获得10
16秒前
华仔应助微笑采纳,获得10
16秒前
顾矜应助微笑采纳,获得10
16秒前
CipherSage应助微笑采纳,获得20
16秒前
无花果应助微笑采纳,获得10
16秒前
16秒前
orixero应助XYX采纳,获得30
17秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769859
求助须知:如何正确求助?哪些是违规求助? 3314919
关于积分的说明 10174140
捐赠科研通 3030186
什么是DOI,文献DOI怎么找? 1662685
邀请新用户注册赠送积分活动 795067
科研通“疑难数据库(出版商)”最低求助积分说明 756560