IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research

华生 认知计算 大数据 数据科学 术语 计算机科学 鉴定(生物学) 国际商用机器公司 重新调整用途 认知 人工智能 医学 数据挖掘 工程类 哲学 纳米技术 材料科学 精神科 生物 废物管理 植物 语言学
作者
Ying Chen,JD Elenee Argentinis,Griff Weber
出处
期刊:Clinical Therapeutics [Elsevier]
卷期号:38 (4): 688-701 被引量:402
标识
DOI:10.1016/j.clinthera.2015.12.001
摘要

Life sciences researchers are under pressure to innovate faster than ever. Big data offer the promise of unlocking novel insights and accelerating breakthroughs. Ironically, although more data are available than ever, only a fraction is being integrated, understood, and analyzed. The challenge lies in harnessing volumes of data, integrating the data from hundreds of sources, and understanding their various formats.New technologies such as cognitive computing offer promise for addressing this challenge because cognitive solutions are specifically designed to integrate and analyze big datasets. Cognitive solutions can understand different types of data such as lab values in a structured database or the text of a scientific publication. Cognitive solutions are trained to understand technical, industry-specific content and use advanced reasoning, predictive modeling, and machine learning techniques to advance research faster.Watson, a cognitive computing technology, has been configured to support life sciences research. This version of Watson includes medical literature, patents, genomics, and chemical and pharmacological data that researchers would typically use in their work. Watson has also been developed with specific comprehension of scientific terminology so it can make novel connections in millions of pages of text. Watson has been applied to a few pilot studies in the areas of drug target identification and drug repurposing. The pilot results suggest that Watson can accelerate identification of novel drug candidates and novel drug targets by harnessing the potential of big data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听话的蜡烛完成签到,获得积分10
1秒前
XW完成签到,获得积分10
2秒前
tong发布了新的文献求助10
2秒前
充电宝应助跳跃志泽采纳,获得10
2秒前
2秒前
共享精神应助呼延傲薇采纳,获得10
3秒前
4秒前
小乌龟完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
cocolu应助侏罗纪世界采纳,获得10
6秒前
大脸猫发布了新的文献求助10
7秒前
NexusExplorer应助HUADAFEI采纳,获得30
7秒前
7秒前
yar应助昵称采纳,获得10
8秒前
枫叶猫扑完成签到 ,获得积分20
8秒前
苏震坤发布了新的文献求助30
9秒前
9秒前
威武白凝发布了新的文献求助10
10秒前
研友_59AB85完成签到,获得积分20
10秒前
听话的梦之完成签到,获得积分10
10秒前
神不楞登发布了新的文献求助10
11秒前
tong完成签到,获得积分10
12秒前
李健应助卡萨卡萨采纳,获得10
12秒前
刘锦裕完成签到,获得积分10
13秒前
围城烟火完成签到,获得积分10
13秒前
科研通AI2S应助阿尔卑斯采纳,获得10
15秒前
优雅破茧发布了新的文献求助40
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
huanghuahua发布了新的文献求助30
16秒前
良辰应助科研通管家采纳,获得10
16秒前
16秒前
小蘑菇应助科研通管家采纳,获得30
16秒前
英姑应助科研通管家采纳,获得10
16秒前
HAP应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259