Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking

结合亲和力 表面蛋白 化学 对接(动物) 隐溶剂化 蛋白质-蛋白质相互作用 分子力学 计算化学 生物化学 计算生物学 大分子对接 力场(虚构) 亲缘关系 溶剂化 分子动力学 生物 计算机科学 人工智能 医学 病毒学 护理部 受体 溶剂
作者
Fu Chen,Hui Liu,Huiyong Sun,Peichen Pan,Youyong Li,Dan Li,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:18 (32): 22129-22139 被引量:396
标识
DOI:10.1039/c6cp03670h
摘要

Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助一把过采纳,获得10
1秒前
Waris完成签到 ,获得积分10
1秒前
liars发布了新的文献求助30
1秒前
范范范完成签到,获得积分10
2秒前
zho应助LZH采纳,获得10
2秒前
2秒前
直球科研发布了新的文献求助10
2秒前
2秒前
orixero应助yaochuan采纳,获得10
3秒前
yyybxqmz完成签到,获得积分10
3秒前
3秒前
3秒前
我先睡了完成签到,获得积分20
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
yxx应助科研通管家采纳,获得10
4秒前
呢咕啦嘶嘚咕啦完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
L3213036054发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
dongjy应助科研通管家采纳,获得50
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
yar应助科研通管家采纳,获得10
4秒前
爱听歌代萱完成签到,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
大西瓜应助科研通管家采纳,获得30
4秒前
研友_LJeoa8完成签到,获得积分10
4秒前
4秒前
今后应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600