亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking

结合亲和力 表面蛋白 化学 对接(动物) 隐溶剂化 蛋白质-蛋白质相互作用 分子力学 计算化学 生物化学 计算生物学 大分子对接 力场(虚构) 亲缘关系 溶剂化 分子动力学 生物 计算机科学 人工智能 医学 病毒学 护理部 受体 溶剂
作者
Fu Chen,Hui Liu,Huiyong Sun,Peichen Pan,Youyong Li,Dan Li,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (32): 22129-22139 被引量:396
标识
DOI:10.1039/c6cp03670h
摘要

Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Shicheng发布了新的文献求助10
13秒前
53秒前
樊伟诚发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
刻苦的长颈鹿完成签到,获得积分10
1分钟前
日拱一卒的蕊完成签到,获得积分20
1分钟前
完美世界应助交钱上班采纳,获得10
1分钟前
寻道图强应助maher采纳,获得30
2分钟前
2分钟前
金灶沐完成签到 ,获得积分10
2分钟前
江望雪完成签到 ,获得积分10
3分钟前
3分钟前
RED发布了新的文献求助10
3分钟前
李爱国应助Jeriu采纳,获得10
3分钟前
3分钟前
Jeriu发布了新的文献求助10
3分钟前
桐桐应助希勤采纳,获得10
3分钟前
Jeriu完成签到,获得积分10
3分钟前
4分钟前
4分钟前
交钱上班发布了新的文献求助10
4分钟前
4分钟前
交钱上班完成签到,获得积分10
4分钟前
TWT发布了新的文献求助10
4分钟前
Fonseca完成签到 ,获得积分10
4分钟前
平日裤子完成签到 ,获得积分10
4分钟前
李健应助一剑白采纳,获得10
4分钟前
科研通AI2S应助Fonseca采纳,获得10
5分钟前
zhl完成签到,获得积分10
5分钟前
TWT完成签到,获得积分10
5分钟前
5分钟前
蔚蓝晴空发布了新的文献求助10
5分钟前
蔚蓝晴空完成签到,获得积分10
6分钟前
自信的傲晴完成签到,获得积分10
6分钟前
Noob_saibot完成签到,获得积分10
6分钟前
Noob_saibot发布了新的文献求助30
6分钟前
衣蝉完成签到 ,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133938
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768648
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791