材料科学
阴极
锂(药物)
电化学
透射电子显微镜
相(物质)
扫描电子显微镜
扫描透射电子显微镜
氧化物
化学工程
分析化学(期刊)
纳米技术
电极
复合材料
化学
冶金
物理化学
医学
工程类
内分泌学
色谱法
有机化学
作者
Bohang Song,Wangda Li,Pengfei Yan,Seungmin Oh,Chongmin Wang,Arumugam Manthiram
标识
DOI:10.1016/j.jpowsour.2016.06.056
摘要
A facile synthesis method has been developed to prepare xLi2MnO3·(1−x)LiNi0.7Co0.15Mn0.15O2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30) cathode materials, combining the advantages of the high specific capacity of the Ni-rich layered phase and the surface chemical stability of the Li-rich layered phase. X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical charge/discharge measurements confirm the formation of a Li-rich layered phase with C2/m symmetry. The high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that the Li-rich nano-domain islands are integrated into the conventional Ni-rich layered matrix (R3¯m). Most importantly, this is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of the layered oxide Li1+δNi1−y−z−δMnyMzO2 (M = metal) is Ni-rich (>0.5) rather than Mn-rich (>0.5). Remarkably, the xLi2MnO3·(1−x)LiNi0.7Co0.15Mn0.15O2 cathodes with optimized x value shows superior electrochemical performance at C/3 rate: an initial capacity of 190 mA h g−1 with 90% capacity retention after 400 cycles in a half cell and 73.5% capacity retention after 900 cycles in a pouch-type full cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI