Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyser Performance

过电位 离聚物 电解水 电解 材料科学 阳极 催化作用 化学工程 铂金 析氧 极化(电化学) 电极 复合材料 化学 电解质 电化学 物理化学 工程类 共聚物 聚合物 生物化学
作者
Maximilian Bernt,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2016-01 (29): 1418-1418
标识
DOI:10.1149/ma2016-01/29/1418
摘要

PEM water electrolysers are promising candidates for energy storage in combination with renewable energy sources. At the moment, a large-scale application is still hindered by the high capital costs associated with PEM electrolysis [1, 2]. One attempt to overcome this problem is to increase the H 2 output by operating an electrolyser at current densities much higher than the values typically reported in literature (1-2 A cm -2 ). Recent publications have shown that current densities of 5 A cm -2 and higher are possible [3, 4]. However for such high current densities the overpotential increases, leading to a lower overall efficiency. Therefore a careful analysis of the voltage losses is necessary to identify how parameters like catalyst loading, electrode thickness, and ionomer content influence the performance of the electrolyser and how the MEAs can be modified to minimize the overpotential. Previous studies have shown a significant influence of ionomer content on the electrolyser performance [5, 6]. This was attributed to changes in the catalyst/ionomer interfacial resistance and or catalyst layer resistance. However a complete understanding of the effect, especially for current densities above 1.5 A cm -2 is still missing. In this study, MEAs based on a carbon-supported platinum catalyst (Pt/C) for the hydrogen evolution reaction (HER) and an IrO 2 /TiO 2 catalyst (Umicore) for the oxygen evolution reaction (OER) were fabricated with different anode ionomer loadings. Polarization curves were recorded for current densities up to 6 A cm -2 . The best performance was obtained for an ionomer content of 11.6 wt% (relative to total mass of electrode). The MEAs were analyzed via cross-sectional SEM imaging to determine the electrode thickness. This allows an estimation of the ionomer volume fraction in the electrode which can then be related to an effective proton transport resistance in the electrode according to Liu et al. [7]. The proton transport resistance, along with the ohmic resistance determined by impedance spectroscopy and kinetic losses obtained from Tafel plot analysis is used to model the voltage losses of the electrolyser MEAs. It is shown that while the proton transport resistance decreases for higher ionomer loadings, additional losses occur which can be attributed to mass transport and electronic conduction resistances. Acknowledgements: This work was funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology through the project ZAE-ST (storage technologies). Seed-funding by the Bavarian State Ministry of Education and Culture, Science and Art through the Munich School of Engineering in the framework of the “Energy Valley Bavaria” project, as well as technical support by the TUM chemistry department workshop and S. Koynov, is gratefully acknowledged. References: [1] K. E. Ayers, E. B. Anderson, C. B. Capuano, B. D. Carter, L. T. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, ECS Trans ., 33, 3 (2010). [2] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, Int. J. Hydrogen Energy, 38 , 4901 (2013). [3] M. Suermann, T. J. Schmidt and F. N. Büchi, ECS Trans ., 69, 1141 (2015). [4] K. A. Lewinskia, D. F. van der Vlieta, and S. M. Luopaa, ECS Trans ., 69, 893 (2015). [5] W. Xu and K. Scott, Int. J. Hydrogen Energy , 35 , 12029 (2010). [6] L. Ma, S. Sui and Y. Zhai, Int. J. Hydrogen Energy , 34 , 678 (2009). [7] Y. Liu, C. Ji, W. Gu, J. Jorne and H. A. Gasteiger, J. Electrochem. Soc ., 158 , B614 (2011). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助laochen采纳,获得10
1秒前
盘尼西林发布了新的文献求助10
1秒前
迟大猫应助专心搞学术采纳,获得10
2秒前
4秒前
孙奕完成签到,获得积分10
5秒前
5秒前
俟天晴完成签到,获得积分10
5秒前
淡定问芙发布了新的文献求助30
6秒前
8秒前
Lewis完成签到,获得积分10
9秒前
orixero应助TranYan采纳,获得10
9秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
今后应助333采纳,获得10
13秒前
pu发布了新的文献求助10
14秒前
Akim应助梓榆采纳,获得10
15秒前
劼大大完成签到,获得积分10
15秒前
最优解完成签到 ,获得积分20
16秒前
16秒前
通~发布了新的文献求助10
16秒前
一段乐多完成签到,获得积分10
17秒前
17秒前
17秒前
给我找完成签到,获得积分10
18秒前
桐桐应助Yuki0616采纳,获得10
18秒前
小马甲应助鸣隐采纳,获得10
18秒前
ycd完成签到,获得积分10
19秒前
ark861023完成签到,获得积分10
19秒前
淡定问芙完成签到,获得积分10
19秒前
斯文败类应助惠惠采纳,获得10
20秒前
20秒前
Meowly完成签到,获得积分10
20秒前
21秒前
21秒前
陶醉觅夏发布了新的文献求助10
21秒前
pu完成签到,获得积分10
21秒前
小灵通完成签到,获得积分10
21秒前
给我找发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794