Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨辰完成签到,获得积分10
刚刚
不安含之完成签到,获得积分10
1秒前
小卡拉米发布了新的文献求助10
1秒前
1秒前
1秒前
jacksin完成签到,获得积分10
2秒前
2秒前
深情安青应助虚拟小号采纳,获得10
2秒前
3秒前
风趣的烨磊完成签到,获得积分10
4秒前
poiuy发布了新的文献求助10
4秒前
情怀应助anlikek采纳,获得10
4秒前
李洋发布了新的文献求助10
5秒前
qidada完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助zhang采纳,获得10
6秒前
6秒前
机智鱼应助Seven采纳,获得10
6秒前
liwang1979完成签到,获得积分10
6秒前
香菜皮蛋完成签到 ,获得积分10
7秒前
小章完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
风中寄云完成签到,获得积分20
9秒前
9秒前
草拟大坝完成签到 ,获得积分0
10秒前
zero灬发布了新的文献求助20
11秒前
友好小小发布了新的文献求助10
11秒前
12秒前
12秒前
善学以致用应助JOJO采纳,获得10
12秒前
吃猫的鱼发布了新的文献求助10
12秒前
13秒前
常乐的大宝剑完成签到,获得积分10
13秒前
谢谢谢完成签到 ,获得积分10
13秒前
学术草莓发布了新的文献求助10
13秒前
虚拟小号发布了新的文献求助10
13秒前
果果完成签到,获得积分10
13秒前
奈何完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3078453
求助须知:如何正确求助?哪些是违规求助? 2731120
关于积分的说明 7517197
捐赠科研通 2379609
什么是DOI,文献DOI怎么找? 1261760
科研通“疑难数据库(出版商)”最低求助积分说明 611719
版权声明 597349