亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助无风采纳,获得10
11秒前
15秒前
22秒前
simple1完成签到 ,获得积分10
24秒前
dogontree发布了新的文献求助10
27秒前
xiaoli发布了新的文献求助10
47秒前
开霁完成签到 ,获得积分10
51秒前
52秒前
53秒前
搜集达人应助无辜笑容采纳,获得10
53秒前
852应助科研通管家采纳,获得10
54秒前
LMW应助科研通管家采纳,获得10
54秒前
LMW应助科研通管家采纳,获得10
54秒前
LMW应助科研通管家采纳,获得10
54秒前
Keating发布了新的文献求助10
56秒前
Keating完成签到,获得积分10
1分钟前
WK完成签到,获得积分10
1分钟前
丘比特应助linkman采纳,获得30
1分钟前
所所应助linkman采纳,获得10
1分钟前
FashionBoy应助linkman采纳,获得10
1分钟前
wanci应助linkman采纳,获得10
1分钟前
英俊的铭应助linkman采纳,获得10
1分钟前
酷波er应助linkman采纳,获得10
1分钟前
科研通AI2S应助linkman采纳,获得10
1分钟前
今后应助linkman采纳,获得10
1分钟前
小二郎应助linkman采纳,获得10
1分钟前
脑洞疼应助linkman采纳,获得10
1分钟前
1分钟前
xiaoli发布了新的文献求助10
1分钟前
慕青应助ZR采纳,获得10
1分钟前
1分钟前
胡天硕发布了新的文献求助10
1分钟前
我爱看文献是假的完成签到,获得积分10
1分钟前
ZR完成签到,获得积分10
1分钟前
zyl完成签到 ,获得积分10
1分钟前
NexusExplorer应助ddk六采纳,获得10
2分钟前
2分钟前
七星关脆哨丁完成签到,获得积分10
2分钟前
Ava应助胡天硕采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625762
求助须知:如何正确求助?哪些是违规求助? 4024874
关于积分的说明 12458015
捐赠科研通 3709929
什么是DOI,文献DOI怎么找? 2046390
邀请新用户注册赠送积分活动 1078270
科研通“疑难数据库(出版商)”最低求助积分说明 960772