已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏向上发布了新的文献求助10
4秒前
nihao完成签到 ,获得积分10
5秒前
杨念一给杨念一的求助进行了留言
5秒前
斯寜完成签到,获得积分0
9秒前
华仔应助hzq采纳,获得10
13秒前
雨城完成签到 ,获得积分10
14秒前
马美丽完成签到 ,获得积分10
14秒前
宇儿发布了新的文献求助10
15秒前
AARON发布了新的文献求助10
15秒前
月落无痕97完成签到 ,获得积分0
18秒前
香蕉新儿完成签到,获得积分10
26秒前
沈严青发布了新的文献求助20
31秒前
青衣完成签到,获得积分10
40秒前
周小熊完成签到 ,获得积分10
41秒前
不安的松完成签到 ,获得积分10
41秒前
万能图书馆应助沈严青采纳,获得10
45秒前
彭于晏应助酷酷的冬灵采纳,获得30
46秒前
51秒前
jml完成签到,获得积分10
53秒前
汉堡包应助徐志豪采纳,获得10
54秒前
我是老大应助chen采纳,获得10
55秒前
hzq发布了新的文献求助10
56秒前
1分钟前
赘婿应助科研老工人采纳,获得30
1分钟前
chen发布了新的文献求助10
1分钟前
李某某完成签到 ,获得积分10
1分钟前
深情安青应助静夜澜迷失采纳,获得10
1分钟前
te发布了新的文献求助30
1分钟前
三岁完成签到 ,获得积分10
1分钟前
te完成签到,获得积分10
1分钟前
上官老师完成签到 ,获得积分10
1分钟前
1分钟前
大力的宝川完成签到 ,获得积分10
1分钟前
CodeCraft应助momo采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得100
1分钟前
1分钟前
顽主完成签到,获得积分10
1分钟前
宇儿完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052738
求助须知:如何正确求助?哪些是违规求助? 4279737
关于积分的说明 13339792
捐赠科研通 4095195
什么是DOI,文献DOI怎么找? 2241469
邀请新用户注册赠送积分活动 1247765
关于科研通互助平台的介绍 1177129