已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助祖尔风采纳,获得10
1秒前
肉松发布了新的文献求助10
2秒前
2秒前
3秒前
Mob完成签到,获得积分10
4秒前
扎菜完成签到,获得积分20
5秒前
CodeCraft应助caia采纳,获得10
6秒前
6秒前
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
冒险寻羊应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
Owen应助科研通管家采纳,获得10
7秒前
hhc发布了新的文献求助10
7秒前
Diamond发布了新的文献求助10
8秒前
10秒前
Mob发布了新的文献求助10
10秒前
11秒前
TBLS发布了新的文献求助10
11秒前
小郭子完成签到 ,获得积分10
12秒前
环子完成签到 ,获得积分10
13秒前
13秒前
嗯哼应助小安小安采纳,获得20
13秒前
祖尔风发布了新的文献求助10
14秒前
14秒前
今后应助隐形的糖豆采纳,获得10
15秒前
16秒前
文武发布了新的文献求助10
17秒前
充电宝应助asd采纳,获得10
17秒前
传奇3应助活泼的沅采纳,获得10
18秒前
JIERAN完成签到 ,获得积分10
18秒前
JamesPei应助背后的幻巧采纳,获得10
18秒前
文献菜鸟完成签到 ,获得积分10
19秒前
向日葵完成签到 ,获得积分10
20秒前
荞麦面发布了新的文献求助10
20秒前
汤汤圆圆发布了新的文献求助30
20秒前
香蕉觅云应助LL采纳,获得10
20秒前
李健应助shuhaha采纳,获得10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956