Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜瓜不熟完成签到,获得积分10
刚刚
六六大顺发布了新的文献求助10
刚刚
喝下午茶的狗完成签到,获得积分10
1秒前
桐桐应助hantuo采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
小饼干完成签到,获得积分10
5秒前
sujustin333发布了新的文献求助30
6秒前
6秒前
阿刁完成签到,获得积分10
7秒前
zm发布了新的文献求助30
7秒前
生动的水池完成签到,获得积分10
8秒前
在水一方应助飞飞采纳,获得10
8秒前
云中发布了新的文献求助10
8秒前
就不吃苹果完成签到,获得积分10
9秒前
guozizi发布了新的文献求助10
9秒前
专注的傲之完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
坤坤蹦蹦跳跳完成签到,获得积分10
11秒前
12秒前
学了个习应助sujustin333采纳,获得10
12秒前
guozizi发布了新的文献求助20
14秒前
英姑应助斤斤采纳,获得10
14秒前
14秒前
15秒前
15秒前
宁宁完成签到,获得积分10
16秒前
木木木木发布了新的文献求助10
17秒前
王王完成签到 ,获得积分10
18秒前
缓慢的含双完成签到,获得积分10
19秒前
啦啦啦发布了新的文献求助10
19秒前
六六大顺完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836