Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks

体素 冠状面 最小边界框 卷积神经网络 人工智能 矢状面 医学 模式识别(心理学) 放射科 计算机科学 图像(数学)
作者
Jelmer M. Wolterink,Tim Leiner,Bob D. de Vos,Robbert W. van Hamersvelt,Max A. Viergever,Ivana Išgum
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:34: 123-136 被引量:272
标识
DOI:10.1016/j.media.2016.04.004
摘要

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚雅柔完成签到 ,获得积分10
刚刚
刚刚
刚刚
干净的小懒虫完成签到,获得积分10
1秒前
mostspecial发布了新的文献求助10
3秒前
猪猪hero应助wjx采纳,获得10
3秒前
情怀应助YYQX采纳,获得10
4秒前
追寻奄发布了新的文献求助10
4秒前
vee完成签到 ,获得积分10
4秒前
ChenYX完成签到,获得积分10
4秒前
badada发布了新的文献求助10
4秒前
4秒前
4秒前
yuhang完成签到,获得积分10
5秒前
CodeCraft应助空溟fever采纳,获得10
5秒前
原子完成签到,获得积分10
6秒前
6秒前
芽芽豆完成签到 ,获得积分10
9秒前
大力的图图完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
我是老大应助就是嘀咕采纳,获得10
13秒前
SYLH应助yuko采纳,获得10
13秒前
开朗的钻石完成签到,获得积分10
14秒前
传奇3应助残酷无情猫猫头采纳,获得10
14秒前
独特冰安发布了新的文献求助10
14秒前
14秒前
15秒前
ljl完成签到,获得积分20
15秒前
咕咕发布了新的文献求助10
15秒前
可爱的函函应助追寻奄采纳,获得10
16秒前
16秒前
smottom应助lily采纳,获得10
16秒前
hzh发布了新的文献求助30
16秒前
17秒前
万能图书馆应助还没想好采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298