Purifier: Plug-and-play Backdoor Mitigation for Pre-trained Models Via Anomaly Activation Suppression

后门 计算机科学 稳健性(进化) 推论 计算机安全 人工智能 生物化学 基因 化学
作者
Xiaoyu Zhang,Yulin Jin,Tao Wang,Jian Lou,Xiaofeng Chen
标识
DOI:10.1145/3503161.3548065
摘要

Pre-trained models have been widely adopted in deep learning development, benefiting the fine-tuning of downstream user-specific tasks with enormous computation saving. However, backdoor attacks pose severe security threat to the subsequent models built upon compromised pre-trained models, which call for effective countermeasures to mitigate the backdoor threat before deploying the victim models to safety-critical applications. This paper proposesPurifier : a novel backdoor mitigation framework for pre-trained models via suppressing anomaly activation.Purifier is motivated by the observation that, for backdoor triggers, anomaly activation patterns exist across different perspectives (e.g., channel-wise, cube-wise, and feature-wise), featuring different degrees of granularity. More importantly, choosing to suppress at the right granularity is vital to robustness and accuracy. To this end,Purifier is capable of defending against diverse types of backdoor triggers without any prior knowledge of the backdoor attacks, meanwhile featuring a convenient and flexible characteristic during deployment, i.e., plug-and-play-able. The extensive experimental results show, against a series of state-of-the-art mainstream attacks, thatPurifier performs better in terms of both defense effectiveness and model inference accuracy on clean examples than the state-of-the-art methods. Our code and Appendix can be found in \urlgithub.com/RUIYUN-ML/Purifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanzhao完成签到,获得积分10
1秒前
云墨完成签到 ,获得积分10
1秒前
小蘑菇应助小王采纳,获得10
1秒前
1秒前
wlkk完成签到,获得积分10
2秒前
zz完成签到 ,获得积分10
2秒前
思源应助王盼采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
研友_VZG7GZ应助wyd采纳,获得10
5秒前
Akim应助Mia采纳,获得30
5秒前
lan完成签到,获得积分10
5秒前
慕恩呐发布了新的文献求助10
5秒前
6秒前
6秒前
英姑应助啊啊啊啊采纳,获得10
6秒前
完美世界应助火星上莛采纳,获得10
6秒前
方源发布了新的文献求助10
6秒前
牧野牧发布了新的文献求助10
7秒前
kk完成签到,获得积分10
8秒前
陈小青发布了新的文献求助30
8秒前
8秒前
笔芯完成签到,获得积分10
8秒前
8秒前
安安完成签到,获得积分20
8秒前
yuhan发布了新的文献求助50
9秒前
旺仔不甜完成签到,获得积分10
9秒前
WN发布了新的文献求助10
10秒前
10秒前
英俊的铭应助啊啊啊采纳,获得10
10秒前
10秒前
mark完成签到,获得积分10
10秒前
11秒前
SUCUICUI发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401