Purifier: Plug-and-play Backdoor Mitigation for Pre-trained Models Via Anomaly Activation Suppression

后门 计算机科学 稳健性(进化) 推论 计算机安全 人工智能 生物化学 基因 化学
作者
Xiaoyu Zhang,Yulin Jin,Tao Wang,Jian Lou,Xiaofeng Chen
标识
DOI:10.1145/3503161.3548065
摘要

Pre-trained models have been widely adopted in deep learning development, benefiting the fine-tuning of downstream user-specific tasks with enormous computation saving. However, backdoor attacks pose severe security threat to the subsequent models built upon compromised pre-trained models, which call for effective countermeasures to mitigate the backdoor threat before deploying the victim models to safety-critical applications. This paper proposesPurifier : a novel backdoor mitigation framework for pre-trained models via suppressing anomaly activation.Purifier is motivated by the observation that, for backdoor triggers, anomaly activation patterns exist across different perspectives (e.g., channel-wise, cube-wise, and feature-wise), featuring different degrees of granularity. More importantly, choosing to suppress at the right granularity is vital to robustness and accuracy. To this end,Purifier is capable of defending against diverse types of backdoor triggers without any prior knowledge of the backdoor attacks, meanwhile featuring a convenient and flexible characteristic during deployment, i.e., plug-and-play-able. The extensive experimental results show, against a series of state-of-the-art mainstream attacks, thatPurifier performs better in terms of both defense effectiveness and model inference accuracy on clean examples than the state-of-the-art methods. Our code and Appendix can be found in \urlgithub.com/RUIYUN-ML/Purifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助无呜呜采纳,获得10
刚刚
刚刚
ranlan关注了科研通微信公众号
1秒前
yy发布了新的文献求助10
1秒前
2秒前
而风不止发布了新的文献求助10
2秒前
2秒前
4秒前
椰椰发布了新的文献求助10
4秒前
科研通AI6应助ll采纳,获得10
5秒前
无花果应助别凡采纳,获得10
5秒前
怕黑山晴发布了新的文献求助10
6秒前
6秒前
玉佩完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
7秒前
洪亭完成签到 ,获得积分10
7秒前
gstaihn完成签到,获得积分10
8秒前
研友_VZG7GZ应助CYANjane采纳,获得50
8秒前
科研通AI2S应助明杰采纳,获得10
8秒前
无名的人完成签到 ,获得积分10
8秒前
正己化人应助西风采纳,获得20
9秒前
10秒前
copper完成签到,获得积分10
10秒前
852应助lililiwithin采纳,获得10
11秒前
呜呜完成签到,获得积分10
11秒前
殷勤的凝海完成签到 ,获得积分10
12秒前
13秒前
深情安青应助舒服的灰狼采纳,获得10
13秒前
cccr完成签到 ,获得积分10
14秒前
忐忑的斓发布了新的文献求助10
16秒前
Mmm完成签到,获得积分20
16秒前
瘦瘦的小兔子完成签到,获得积分10
18秒前
18秒前
太胖了你发布了新的文献求助10
18秒前
19秒前
19秒前
红岸完成签到,获得积分10
20秒前
20秒前
20秒前
23秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188