儿茶酚
光致发光
荧光团
荧光
光化学
吩嗪
化学
分子
激发态
材料科学
光电子学
有机化学
物理
量子力学
核物理学
作者
Pengfei Li,Shanshan Xue,Lu Sun,Xupeng Zong,Li An,Dan Qu,Xiayan Wang,Zaicheng Sun
标识
DOI:10.1038/s41377-022-00984-5
摘要
Carbon dots (CDs) as the advancing fluorescent carbon nanomaterial have superior potential and prospective. However, the ambiguous photoluminescence (PL) mechanism and intricate structure-function relationship become the greatest hindrances in the development and applications of CDs. Herein, red emissive CDs were synthesized in high yield from o-phenylenediamine (oPD) and catechol (CAT). The PL mechanism of the CDs is considered as the molecular state fluorophores because 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) is separated and exhibits the same PL properties and behavior as the CDs. These include the peak position and shape of the PL emission and PL excitation and the emission dependence on pH and solvent polarity. Both of them display close PL lifetime decays. Based on these, we deduce that DHQP is the fluorophore of the red emissive CDs and the PL mechanism of CDs is similar to DHQP. During the PL emission of CDs, the electron of the molecule state can transfer to CDs. The formation process of DHQP is further confirmed by the reaction intermediates (phthalazine, dimers) and oPD. These findings provide insights into the PL mechanism of this type of CDs and may guide the further development of tunable CDs for tailored properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI