Paired plasma lipidomics and proteomics analysis in the conversion from mild cognitive impairment to Alzheimer's disease

脂类学 生物标志物 疾病 阿尔茨海默病神经影像学倡议 蛋白质组学 计算生物学 阿尔茨海默病 多发性硬化 队列 生物信息学 医学 神经科学 生物 病理 生物化学 免疫学 基因
作者
Alicia Gómez-Pascual,Talel Naccache,Jin Xu,Kourosh Hooshmand,Asger Wretlind,Martina Gabrielli,Marta Tiffany Lombardo,Liu Shi,Noel J. Buckley,Betty M. Tijms,Stephanie J.B. Vos,Mara ten Kate,Sebastiaan Engelborghs,Kristel Sleegers,Giovanni B. Frisoni,Anders Wallin,Alberto Lleó,Julius Popp,Pablo Martínez‐Lage,Johannes Streffer,Frederik Barkhof,Henrik Zetterberg,Pieter Jelle Visser,Simon Lovestone,Lars Bertram,Alejo Nevado‐Holgado,Alice Gualerzi,Silvia Picciolini,Petroula Proitsi,Claudia Verderio,Juan A. Botía,Cristina Legido‐Quigley
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:176: 108588-108588 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108588
摘要

Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
六日给六日的求助进行了留言
2秒前
ycw123发布了新的文献求助10
2秒前
科研通AI2S应助tang采纳,获得10
3秒前
栗子完成签到,获得积分10
3秒前
Lumi发布了新的文献求助30
3秒前
花无双完成签到,获得积分0
3秒前
3秒前
6秒前
刻苦羽毛完成签到 ,获得积分10
6秒前
6秒前
7秒前
sdhgd给曾旭的求助进行了留言
7秒前
啊懂发布了新的文献求助10
8秒前
Daisy完成签到 ,获得积分10
8秒前
李四发布了新的文献求助10
8秒前
10秒前
子车茗应助可可可采纳,获得10
10秒前
10秒前
guang发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
upupup111发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助tang采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
在水一方应助精明寄灵采纳,获得10
13秒前
叙温雨发布了新的文献求助10
13秒前
哈ha发布了新的文献求助10
15秒前
狗狗发布了新的文献求助10
15秒前
15秒前
LXN发布了新的文献求助10
16秒前
hhx发布了新的文献求助10
16秒前
啊懂完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149477
求助须知:如何正确求助?哪些是违规求助? 2800533
关于积分的说明 7840390
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308241
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706