已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine‐learning classifier models for predicting sarcopenia in the elderly based on physical factors

肌萎缩 分类器(UML) 人工智能 机器学习 计算机科学 物理医学与康复 医学 内科学
作者
Jun‐hee Kim
出处
期刊:Geriatrics & Gerontology International [Wiley]
卷期号:24 (6): 595-602 被引量:4
标识
DOI:10.1111/ggi.14895
摘要

Aim As the size of the elderly population gradually increases, musculoskeletal disorders, such as sarcopenia, are increasing. Diagnostic techniques such as X‐rays, computed tomography, and magnetic resonance imaging are used to predict and diagnose sarcopenia, and methods using machine learning are gradually increasing. This study aimed to create a model that can predict sarcopenia using physical characteristics and activity‐related variables without medical diagnostic equipment, such as imaging equipment, for the elderly aged 60 years or older. Methods A sarcopenia prediction model was constructed using public data obtained from the Korea National Health and Nutrition Examination Survey. Models were built using Logistic Regression, Support Vector Machine (SVM), XGBoost, LightGBM, RandomForest, and Multi‐layer Perceptron Neural Network (MLP) algorithms, and the feature importance of the models trained with the algorithms, except for SVM and MLP, was analyzed. Results The sarcopenia prediction model built with the LightGBM algorithm achieved the highest test accuracy, of 0.848. In constructing the LightGBM model, physical characteristic variables such as body mass index, weight, and waist circumference showed high importance, and activity‐related variables were also used in constructing the model. Conclusions The sarcopenia prediction model, which consisted of only physical characteristics and activity‐related factors, showed excellent performance. This model has the potential to assist in the early detection of sarcopenia in the elderly, especially in communities with limited access to medical resources or facilities. Geriatr Gerontol Int 2024; 24: 595–602 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的YY完成签到 ,获得积分10
3秒前
wangjun完成签到,获得积分10
4秒前
Sy发布了新的文献求助10
8秒前
尊敬的怀曼完成签到,获得积分10
8秒前
雪白的面包完成签到 ,获得积分10
11秒前
13秒前
月月鸟完成签到 ,获得积分10
16秒前
19秒前
20秒前
Hello应助科研进化中采纳,获得10
20秒前
九日橙完成签到 ,获得积分10
23秒前
linkman发布了新的文献求助30
23秒前
克泷完成签到 ,获得积分10
27秒前
诚心以冬完成签到,获得积分10
35秒前
40秒前
橙子完成签到 ,获得积分10
44秒前
999完成签到,获得积分10
44秒前
46秒前
zakarya完成签到,获得积分10
47秒前
zakarya发布了新的文献求助10
51秒前
可冥完成签到 ,获得积分10
58秒前
自由的谷丝完成签到,获得积分10
59秒前
jozz完成签到 ,获得积分10
1分钟前
小鱼儿完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
eric888应助科研通管家采纳,获得100
1分钟前
loen完成签到,获得积分10
1分钟前
TTTTTT完成签到,获得积分10
1分钟前
1分钟前
wy.he应助春天先生采纳,获得10
1分钟前
ying818k完成签到 ,获得积分10
1分钟前
紧张的以山完成签到,获得积分10
1分钟前
小哥881212完成签到,获得积分10
1分钟前
开霁完成签到 ,获得积分10
1分钟前
wintersss完成签到,获得积分10
1分钟前
fly完成签到 ,获得积分10
1分钟前
充满怪兽的世界完成签到,获得积分10
1分钟前
CipherSage应助zzc采纳,获得10
1分钟前
脑洞疼应助肖笑笑采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176