Machine‐learning classifier models for predicting sarcopenia in the elderly based on physical factors

肌萎缩 分类器(UML) 人工智能 机器学习 计算机科学 物理医学与康复 医学 内科学
作者
Jun‐hee Kim
出处
期刊:Geriatrics & Gerontology International [Wiley]
卷期号:24 (6): 595-602 被引量:1
标识
DOI:10.1111/ggi.14895
摘要

Aim As the size of the elderly population gradually increases, musculoskeletal disorders, such as sarcopenia, are increasing. Diagnostic techniques such as X‐rays, computed tomography, and magnetic resonance imaging are used to predict and diagnose sarcopenia, and methods using machine learning are gradually increasing. This study aimed to create a model that can predict sarcopenia using physical characteristics and activity‐related variables without medical diagnostic equipment, such as imaging equipment, for the elderly aged 60 years or older. Methods A sarcopenia prediction model was constructed using public data obtained from the Korea National Health and Nutrition Examination Survey. Models were built using Logistic Regression, Support Vector Machine (SVM), XGBoost, LightGBM, RandomForest, and Multi‐layer Perceptron Neural Network (MLP) algorithms, and the feature importance of the models trained with the algorithms, except for SVM and MLP, was analyzed. Results The sarcopenia prediction model built with the LightGBM algorithm achieved the highest test accuracy, of 0.848. In constructing the LightGBM model, physical characteristic variables such as body mass index, weight, and waist circumference showed high importance, and activity‐related variables were also used in constructing the model. Conclusions The sarcopenia prediction model, which consisted of only physical characteristics and activity‐related factors, showed excellent performance. This model has the potential to assist in the early detection of sarcopenia in the elderly, especially in communities with limited access to medical resources or facilities. Geriatr Gerontol Int 2024; 24: 595–602 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
杨露完成签到 ,获得积分10
1秒前
鹤辞发布了新的文献求助10
2秒前
Herrily完成签到,获得积分10
3秒前
lanshuitai发布了新的文献求助10
4秒前
打打应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
5秒前
共享精神应助清汤不加盐采纳,获得10
5秒前
甜甜映菡发布了新的文献求助10
5秒前
脑洞疼应助tzb采纳,获得10
6秒前
欧阳半仙完成签到,获得积分10
7秒前
yukkii完成签到,获得积分10
7秒前
8秒前
南方姑娘发布了新的文献求助10
9秒前
勤恳的秋寒完成签到,获得积分10
10秒前
13秒前
重要山彤完成签到 ,获得积分10
14秒前
yukkii发布了新的文献求助10
14秒前
Zoe完成签到,获得积分10
15秒前
16秒前
17秒前
Jasper应助寻123采纳,获得10
18秒前
renhu完成签到,获得积分10
18秒前
霸气雪珍完成签到,获得积分10
19秒前
火星上冥茗完成签到 ,获得积分10
19秒前
19秒前
萧清完成签到,获得积分20
20秒前
杨露发布了新的文献求助10
21秒前
21秒前
tzb发布了新的文献求助10
22秒前
23秒前
鹤辞完成签到,获得积分10
24秒前
25秒前
25秒前
石鑫发布了新的文献求助10
26秒前
十一克拉发布了新的文献求助10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655