琼脂糖
材料科学
超临界流体
脚手架
模数
复合材料
多孔性
超临界干燥
生物医学工程
化学工程
化学
色谱法
医学
有机化学
工程类
作者
Alessandra Zanotti,Lucia Baldino,Stefano Cardea,Ernesto Reverchon
出处
期刊:Molecules
[MDPI AG]
日期:2024-05-25
卷期号:29 (11): 2498-2498
被引量:1
标识
DOI:10.3390/molecules29112498
摘要
Bone tissue engineering (BTE) is the most promising strategy to repair bones injuries and defects. It relies on the utilization of a temporary support to host the cells and promote nutrient exchange (i.e., the scaffold). Supercritical CO2 assisted drying can preserve scaffold nanostructure, crucial for cell attachment and proliferation. In this work, agarose aerogels, loaded with hydroxyapatite were produced in view of BTE applications. Different combinations of agarose concentration and hydroxyapatite loadings were tested. FESEM and EDX analyses showed that scaffold structure suffered from partial closure when increasing filler concentration; hydroxyapatite distribution was homogenous, and Young’s modulus improved. Looking at BTE applications, the optimal combination of agarose and hydroxyapatite resulted to be 1% w/w and 10% w/v, respectively. Mechanical properties showed that the produced composites could be eligible as starting scaffold for BTE, with a Young’s Modulus larger than 100 kPa for every blend.
科研通智能强力驱动
Strongly Powered by AbleSci AI