Low carbon optimization scheduling of micro grid based on improved particle swarm optimization algorithm

粒子群优化 计算机科学 多群优化 元启发式 数学优化 网格 优化算法 算法 数学 几何学
作者
Yingjun Sang,Zhang Wen-zhi,Jing Ma,Chen Quanyu,Tao Jinglei,Yuanyuan Fan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 76432-76441 被引量:1
标识
DOI:10.1109/access.2024.3406036
摘要

This article proposes a low-carbon operation analysis method for micro grids based on improved particle swarm optimization algorithm. Corresponding improvements have been made to the inertia weight, learning factor, and individual extreme of the algorithm, depicting the comprehensive low-carbon operation information of micro grids under the influence of carbon emission quotas and carbon trading mechanisms from the perspective of data visualization. The low-carbon scheduling of micro grids is carried out from three perspectives: environmental protection, economy, and comprehensiveness, which compensates for the limitations of focusing on traditional low-carbon operation and provides a powerful tool for analyzing low-carbon operation of micro grids. Firstly, establish the energy consumption cost and carbon emission cost functions of the micro grid system, add the two cost functions together and take the minimum sum to form the objective function of this article. Then, based on the characteristics of each unit, a low-carbon model is constructed to constrain the carbon emissions of each unit. Finally, simulation analysis was conducted on the micro grid system based on the improved particle swarm optimization algorithm, verifying the effectiveness and practicality of the proposed algorithm. The simulation results show that the improved particle swarm optimization algorithm can quickly and effectively reduce energy consumption and carbon emission costs, and improve the comprehensive efficiency of micro grid systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的小土豆完成签到 ,获得积分10
刚刚
biu完成签到 ,获得积分10
1秒前
夏小安完成签到,获得积分10
1秒前
儒雅龙完成签到 ,获得积分10
2秒前
传奇3应助guoli采纳,获得10
2秒前
龙卷风完成签到,获得积分10
5秒前
明理的以亦完成签到,获得积分0
5秒前
科研通AI2S应助啦啦啦啦采纳,获得10
7秒前
gincle完成签到 ,获得积分10
7秒前
嘻嘻哈哈应助明理的以亦采纳,获得10
9秒前
NIHAO完成签到 ,获得积分10
11秒前
12秒前
Ziyi_Xu完成签到,获得积分10
13秒前
Xu完成签到,获得积分10
14秒前
木木杨完成签到,获得积分10
16秒前
打打应助龙卷风采纳,获得10
17秒前
沈华炜完成签到,获得积分10
18秒前
20秒前
小青椒完成签到,获得积分0
23秒前
霸气曼雁发布了新的文献求助10
25秒前
冷酷的啤酒完成签到,获得积分0
25秒前
liu发布了新的文献求助10
25秒前
Hunter完成签到,获得积分10
26秒前
33秒前
33秒前
35秒前
时尚的诗珊完成签到 ,获得积分10
37秒前
清爽的人龙完成签到 ,获得积分10
39秒前
fluttershy完成签到 ,获得积分10
43秒前
东京下雨lin完成签到,获得积分10
43秒前
guoli完成签到,获得积分10
44秒前
悦耳娩完成签到,获得积分10
52秒前
huang完成签到,获得积分10
52秒前
默默的完成签到 ,获得积分10
53秒前
QQ完成签到,获得积分10
54秒前
嘻嘻哈哈应助明理的以亦采纳,获得10
56秒前
屿溡完成签到,获得积分10
56秒前
56秒前
wxt完成签到,获得积分10
58秒前
Orange应助勇往直前采纳,获得10
59秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703