Deep Learning Based on Computed Tomography Predicts Response to Chemoimmunotherapy in Lung Squamous Cell Carcinoma

化学免疫疗法 医学 计算机断层摄影术 基底细胞 肿瘤科 放射科 内科学 癌症 免疫疗法
作者
Jie Peng,Baowen Xie,Honglian Ma,Rui Wang,Xiao Hu,Zhongjun Huang
出处
期刊:Aging and Disease [Buck Institute for Research on Aging]
标识
DOI:10.14336/ad.2024.0169
摘要

Non-small-cell lung carcinoma (NSCLC) often carries a dire prognosis. The advent of neoadjuvant chemoimmunotherapy (NCI) has become a promising approach in NSCLC treatment, making the identification of reliable biomarkers for major pathological response (MPR) crucial. This study aimed to devise a deep learning (DL) model to estimate the MPR to NCI in lung squamous cell carcinoma (LUSC) patients and uncover its biological mechanism. We enrolled a cohort of 309 LUSC patients from various medical institutions. A ResNet50 model, trained on contrast-enhanced computed tomography images, was developed, and validated to predict MPR. We examined somatic mutations, genomic data, tumor-infiltrating immune cells, and intra-tumor microorganisms. Post-treatment, 149 (48.22%) patients exhibited MPR. The DL model demonstrated excellent predictive accuracy, evidenced by an area under the receiver operating characteristic curve (AUC) of 0.95 (95% CI: 0.98-1.00) and 0.90 (95% CI: 0.81-0.98) in the first and second validation sets, respectively. Multivariate logistic regression analysis identified the DL model score (low vs. high) as an independent predictor of MPR. The prediction of MPR (P-MPR) correlated with mutations in four genes, as well as gene ontology and pathways tied to immune response and antigen processing and presentation. Analysis also highlighted diversity in immune cells within the tumor microenvironment and in peripheral blood. Moreover, the presence of four distinct bacteria varied among intra-tumor microorganisms. Our DL model proved highly effective in predicting MPR in LUSC patients undergoing NCI, significantly advancing our understanding of the biological mechanisms involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
BenettLee发布了新的文献求助10
2秒前
大马猴完成签到 ,获得积分10
3秒前
Lesile发布了新的文献求助10
3秒前
Hayat应助完美的流沙采纳,获得10
3秒前
yyou完成签到 ,获得积分10
4秒前
Orange应助mmccc1采纳,获得10
4秒前
4秒前
qiao发布了新的文献求助10
6秒前
奈奈647发布了新的文献求助10
7秒前
7秒前
无花果应助羔羊采纳,获得10
8秒前
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得50
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得30
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
椰子完成签到,获得积分10
12秒前
顾矜应助小野采纳,获得10
13秒前
邓娇叶发布了新的文献求助10
14秒前
易水完成签到 ,获得积分10
14秒前
15秒前
Skuld发布了新的文献求助10
15秒前
16秒前
WQ完成签到,获得积分10
18秒前
19秒前
深情安青应助zjm采纳,获得10
22秒前
Steven发布了新的文献求助10
22秒前
打打应助邓娇叶采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075