Deep Learning Based on Computed Tomography Predicts Response to Chemoimmunotherapy in Lung Squamous Cell Carcinoma

化学免疫疗法 医学 计算机断层摄影术 基底细胞 肿瘤科 放射科 内科学 癌症 免疫疗法
作者
Jie Peng,Baowen Xie,Honglian Ma,Rui Wang,Xiao Hu,Zhongjun Huang
出处
期刊:Aging and Disease [Aging and Disease]
被引量:4
标识
DOI:10.14336/ad.2024.0169
摘要

Non-small-cell lung carcinoma (NSCLC) often carries a dire prognosis. The advent of neoadjuvant chemoimmunotherapy (NCI) has become a promising approach in NSCLC treatment, making the identification of reliable biomarkers for major pathological response (MPR) crucial. This study aimed to devise a deep learning (DL) model to estimate the MPR to NCI in lung squamous cell carcinoma (LUSC) patients and uncover its biological mechanism. We enrolled a cohort of 309 LUSC patients from various medical institutions. A ResNet50 model, trained on contrast-enhanced computed tomography images, was developed, and validated to predict MPR. We examined somatic mutations, genomic data, tumor-infiltrating immune cells, and intra-tumor microorganisms. Post-treatment, 149 (48.22%) patients exhibited MPR. The DL model demonstrated excellent predictive accuracy, evidenced by an area under the receiver operating characteristic curve (AUC) of 0.95 (95% CI: 0.98-1.00) and 0.90 (95% CI: 0.81-0.98) in the first and second validation sets, respectively. Multivariate logistic regression analysis identified the DL model score (low vs. high) as an independent predictor of MPR. The prediction of MPR (P-MPR) correlated with mutations in four genes, as well as gene ontology and pathways tied to immune response and antigen processing and presentation. Analysis also highlighted diversity in immune cells within the tumor microenvironment and in peripheral blood. Moreover, the presence of four distinct bacteria varied among intra-tumor microorganisms. Our DL model proved highly effective in predicting MPR in LUSC patients undergoing NCI, significantly advancing our understanding of the biological mechanisms involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sssss完成签到,获得积分20
刚刚
1秒前
Criminology34应助李媛媛采纳,获得10
2秒前
hsy309完成签到,获得积分10
2秒前
xyb完成签到,获得积分10
2秒前
重要笑南完成签到 ,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
大鸣王潮完成签到,获得积分10
4秒前
5秒前
李爱国应助ff采纳,获得10
5秒前
脑洞疼应助糟糕的铁锤采纳,获得10
6秒前
从容安珊完成签到,获得积分10
6秒前
MQ完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
蓝天应助lu1222采纳,获得10
8秒前
LabRat发布了新的文献求助10
9秒前
10秒前
10秒前
TTLOVEDXX完成签到,获得积分10
10秒前
xiaohan发布了新的文献求助10
11秒前
4born发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
852应助dina采纳,获得10
12秒前
肖旻发布了新的文献求助10
13秒前
耍酷的荧发布了新的文献求助30
13秒前
大石头完成签到,获得积分10
13秒前
NATURECATCHER发布了新的文献求助10
14秒前
领导范儿应助卉木萋萋采纳,获得10
14秒前
tang完成签到,获得积分10
14秒前
innocence@x发布了新的文献求助30
14秒前
程瑞哲完成签到,获得积分10
14秒前
NexusExplorer应助自闭小天才采纳,获得10
15秒前
baozibaozi发布了新的文献求助10
15秒前
Jasper应助魁梧的涵柏采纳,获得10
16秒前
16秒前
DrN完成签到,获得积分10
16秒前
领导范儿应助拉长的晓蕾采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148