Short Term Coal Price Prediction Based on VMD-Informer-LSTM Model Considering Error Compensation

补偿(心理学) 计算机科学 人工神经网络 期限(时间) 功率(物理) 电价预测 系列(地层学) 时间序列 人工智能 计量经济学 机器学习 工程类 数学 电力市场 电气工程 物理 精神分析 古生物学 生物 量子力学 废物管理 心理学
作者
Hongyi Huang,Jiaxi Li,Xinyang Zhang,Bo Wen,Zongchao Yu,Ming Wen
标识
DOI:10.1109/acpee60788.2024.10532230
摘要

The sustainable and healthy development of coal-fired power enterprises plays an important role in building a new type power system. The higher the proportion of installed renewable energy, the more prominent the supporting role of thermal power. The price of coal is will directly affect the generating willingness of power generation company, but its nonlinear and abrupt characteristics will make short-term prices difficult to predict. To address this issue, a VMD Informer LSTM short-term coal price prediction method is proposed, which takes into account error compensation. Firstly, the factors with high impact are selected through grey correlation analysis and Pearson correlation coefficient calculation. Secondly, the original coal price time series is decomposed into a series of relatively stable IMF sub signals through VMD decomposition to enhance the recognizability of temporal features. Then, each IMF is sequentially input into the Informer neural network for time series prediction, and the preliminary prediction results are obtained by stacking them. Finally, the prediction error is calculated and applied to the LSTM neural network to complete error compensation. The example shows that the proposed method can effectively improve prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯发布了新的文献求助30
刚刚
刚刚
自觉灵凡发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
朱建军应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
orixero应助lw采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
昏睡的蟠桃应助姣妹崽采纳,获得50
1秒前
yar应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
916应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CR7应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
虚幻人完成签到,获得积分10
3秒前
3秒前
和谐曼凝发布了新的文献求助10
3秒前
4秒前
高贵路灯发布了新的文献求助10
4秒前
lynn发布了新的文献求助10
4秒前
4秒前
4秒前
仁爱的若剑完成签到 ,获得积分10
4秒前
4秒前
4秒前
斯文败类应助wade采纳,获得10
5秒前
上官若男应助诚心尔琴采纳,获得10
5秒前
cly3397完成签到,获得积分10
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635