Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 天文 物理
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大个应助Xu采纳,获得10
1秒前
innocence@x完成签到,获得积分10
1秒前
天天文献我爱看完成签到,获得积分10
1秒前
ChenXinde发布了新的文献求助10
2秒前
沧浪完成签到,获得积分10
2秒前
xio发布了新的文献求助10
2秒前
Yuuki发布了新的文献求助10
4秒前
andou发布了新的文献求助10
4秒前
ankey发布了新的文献求助10
4秒前
5秒前
脑洞疼应助小党采纳,获得10
6秒前
白云发布了新的文献求助10
6秒前
充电宝应助苗条梦玉采纳,获得10
7秒前
焦糖布丁的滋味完成签到,获得积分10
7秒前
JoeJ应助痴情的涵山采纳,获得10
8秒前
共享精神应助倪小采纳,获得10
8秒前
镓氧锌钇铀举报Gaahung求助涉嫌违规
11秒前
科研通AI6应助冷艳觅柔采纳,获得10
12秒前
12秒前
13秒前
hitdsh应助wangchiyi采纳,获得10
13秒前
果粒多发布了新的文献求助10
15秒前
15秒前
16秒前
桐桐应助天天文献我爱看采纳,获得10
16秒前
华仔应助tang采纳,获得10
16秒前
zjujirenjie发布了新的文献求助10
16秒前
Suner完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
哦啦啦发布了新的文献求助10
19秒前
20秒前
ankey完成签到,获得积分10
20秒前
20秒前
21秒前
楠楠发布了新的文献求助100
22秒前
zjujirenjie完成签到,获得积分20
22秒前
23秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242511
求助须知:如何正确求助?哪些是违规求助? 4409060
关于积分的说明 13723997
捐赠科研通 4278352
什么是DOI,文献DOI怎么找? 2347612
邀请新用户注册赠送积分活动 1344773
关于科研通互助平台的介绍 1302862