Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 物理 天文
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鲸鱼发布了新的文献求助10
1秒前
果汁有点甜完成签到,获得积分10
1秒前
Ava应助悲凉的孤萍采纳,获得10
1秒前
研友_ngqQE8完成签到,获得积分10
1秒前
1秒前
Master_Ye发布了新的文献求助10
1秒前
晚晚发布了新的文献求助10
1秒前
1秒前
1秒前
NexusExplorer应助现实的千万采纳,获得10
1秒前
杨先生给杨先生的求助进行了留言
1秒前
秧秧发布了新的文献求助10
2秒前
xqler发布了新的文献求助10
2秒前
XNM完成签到,获得积分10
3秒前
3秒前
3秒前
Patrick发布了新的文献求助20
3秒前
科研通AI5应助要增肥的樱采纳,获得10
3秒前
科研通AI6应助撒啊采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助destiny采纳,获得50
5秒前
刻苦的竺应助静默采纳,获得20
5秒前
5秒前
6秒前
英姑应助smart采纳,获得10
6秒前
缥缈雪碧发布了新的文献求助10
6秒前
123131发布了新的文献求助10
6秒前
李哈哈完成签到,获得积分10
6秒前
科研通AI5应助张晴采纳,获得10
6秒前
一杯月光完成签到,获得积分10
7秒前
Lylin发布了新的文献求助10
7秒前
7秒前
Ellis完成签到,获得积分10
8秒前
8秒前
英俊的铭应助十五采纳,获得10
8秒前
8秒前
dd完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437