Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 天文 物理
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
问奈何发布了新的文献求助10
刚刚
ding应助yizhi猫采纳,获得10
1秒前
慕青应助胡晓雨采纳,获得10
1秒前
大胆的音响完成签到 ,获得积分10
2秒前
香蕉觅云应助dll采纳,获得30
2秒前
Bloo完成签到,获得积分10
3秒前
Owen应助饱满的灵阳采纳,获得10
3秒前
4秒前
6秒前
midx完成签到,获得积分10
6秒前
7秒前
7秒前
10秒前
10秒前
Taegu完成签到,获得积分10
10秒前
舒心的飞双完成签到,获得积分10
11秒前
所所应助猪猪hero采纳,获得10
11秒前
patience发布了新的文献求助10
11秒前
CipherSage应助小苹果采纳,获得10
13秒前
13秒前
充电宝应助希依夏采纳,获得30
15秒前
隐形曼青应助周南采纳,获得10
15秒前
15秒前
16秒前
17秒前
17秒前
shanshan完成签到 ,获得积分10
17秒前
18秒前
18秒前
dll发布了新的文献求助30
19秒前
NexusExplorer应助dove采纳,获得10
19秒前
英俊的铭应助shang采纳,获得10
20秒前
虚幻青筠完成签到 ,获得积分10
20秒前
丘比特应助Harrison采纳,获得10
20秒前
丘比特应助zty采纳,获得10
21秒前
泯珉发布了新的文献求助10
22秒前
Taegu发布了新的文献求助10
22秒前
猪猪hero发布了新的文献求助10
23秒前
斯文败类应助snowman采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209