Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 物理 天文
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暗号完成签到 ,获得积分10
7秒前
老北京完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
WW应助xun采纳,获得10
18秒前
19秒前
wy97发布了新的文献求助10
35秒前
cadcae完成签到,获得积分10
38秒前
danli完成签到 ,获得积分10
45秒前
温馨完成签到 ,获得积分10
48秒前
勤恳的雪卉完成签到,获得积分10
48秒前
jue完成签到 ,获得积分10
53秒前
53秒前
欢呼的茗茗完成签到 ,获得积分10
56秒前
Hiram完成签到,获得积分10
56秒前
XZZ完成签到 ,获得积分10
1分钟前
1分钟前
wy97完成签到,获得积分10
1分钟前
1分钟前
stiger完成签到,获得积分10
1分钟前
ma发布了新的文献求助10
1分钟前
等待戈多发布了新的文献求助10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
1分钟前
xiaoputaor完成签到 ,获得积分10
1分钟前
click完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
汤姆完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
lingshan完成签到 ,获得积分10
1分钟前
ajiduo完成签到 ,获得积分10
1分钟前
liuyq0501完成签到,获得积分10
1分钟前
wjswift完成签到,获得积分10
1分钟前
binfo发布了新的文献求助10
1分钟前
Singularity举报yuansong715求助涉嫌违规
1分钟前
美满的皮卡丘完成签到 ,获得积分10
1分钟前
一路有你完成签到 ,获得积分10
1分钟前
nomanesfy完成签到 ,获得积分10
2分钟前
Lesterem完成签到 ,获得积分10
2分钟前
等待戈多发布了新的文献求助10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793717
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350