Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 天文 物理
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的一手完成签到,获得积分10
刚刚
阿树不是树完成签到,获得积分10
刚刚
悦耳溪流发布了新的文献求助10
刚刚
1秒前
453452542完成签到,获得积分10
2秒前
2秒前
3秒前
张张完成签到,获得积分10
4秒前
dtcao完成签到,获得积分20
4秒前
科研通AI6应助洁净的画板采纳,获得10
5秒前
张张园完成签到,获得积分10
5秒前
6秒前
7秒前
乐乐应助wang1343259150采纳,获得10
7秒前
石可以发布了新的文献求助10
7秒前
8秒前
许许发布了新的文献求助10
8秒前
lwxlvji完成签到,获得积分10
8秒前
小松鼠完成签到 ,获得积分10
9秒前
漠池发布了新的文献求助10
9秒前
光轮2000发布了新的文献求助10
10秒前
呜呜呜发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
传奇3应助甜甜的小龙人采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
Mininine完成签到,获得积分10
15秒前
Go1dstep发布了新的文献求助10
17秒前
18秒前
无敌霸王花应助吴珺慈采纳,获得20
18秒前
19秒前
漠池完成签到,获得积分10
19秒前
20秒前
21秒前
Xinxxx应助理塘大学士采纳,获得10
21秒前
小学猹发布了新的文献求助20
22秒前
浮世之笙完成签到,获得积分20
23秒前
dkwewe完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123274
求助须知:如何正确求助?哪些是违规求助? 4327783
关于积分的说明 13485510
捐赠科研通 4162042
什么是DOI,文献DOI怎么找? 2281160
邀请新用户注册赠送积分活动 1282619
关于科研通互助平台的介绍 1221690