Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 天文 物理
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳小懒虫给勤劳小懒虫的求助进行了留言
刚刚
蔡蔡完成签到,获得积分10
1秒前
33333发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
我在发布了新的文献求助10
3秒前
噔噔蹬完成签到 ,获得积分10
4秒前
辛未发布了新的文献求助10
4秒前
6秒前
田様应助黄思雯采纳,获得10
6秒前
Yyyyyy完成签到,获得积分10
7秒前
ltyuli发布了新的文献求助10
8秒前
嗯啊完成签到,获得积分10
8秒前
ML发布了新的文献求助10
10秒前
10秒前
11秒前
张洪旗完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
popvich应助科研通管家采纳,获得20
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
我是你哥完成签到,获得积分10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
科研通AI2S应助老年人采纳,获得10
14秒前
14秒前
风趣小蜜蜂完成签到 ,获得积分10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543