Evaluation of Automated Driving System Safety Metrics With Logged Vehicle Trajectory Data

弹道 计算机科学 航空学 汽车工程 模拟 工程类 天文 物理
作者
Xintao Yan,Shuo Feng,David J. LeBlanc,Carol A. C. Flannagan,Henry Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2024.3397849
摘要

Real-time safety metrics are important for automated driving systems (ADS) to assess the risk of driving situations and assist in decision-making. Although a number of real-time safety metrics have been proposed in the literature, there is a lack of systematic performance evaluations of these metrics. As different behavioral assumptions are adopted in different safety metrics, it is difficult to compare the safety metrics and evaluate their performance. To overcome this challenge, in this study, we propose an evaluation framework utilizing logged vehicle trajectory data so that vehicle trajectories for both the subject vehicle (SV) and background vehicles (BVs) are obtained and the prediction errors caused by behavioral assumptions can be eliminated. Specifically, we examine whether the SV is in a collision unavoidable situation at each moment, given all near-future trajectories of BVs. In this way, we level the ground for a fair comparison of different safety metrics, as a good safety metric should always alarm in advance to the collision unavoidable moment. When trajectory data from a large number of trips are available, we can systematically evaluate and compare different metrics' statistical performance. In the case study, three representative real-time safety metrics, including the time-to-collision (TTC), the PEGASUS Criticality Metric (PCM) and the Model Predictive Instantaneous Safety Metric (MPrISM), are evaluated using a large-scale simulated trajectory dataset. The results demonstrate that the MPrISM achieves the highest recall and the PCM has the best accuracy. The proposed evaluation framework is important for researchers, practitioners, and regulators to characterize different metrics, and to select appropriate metrics for different applications. Moreover, by conducting failure analysis on moments when a safety metric fails, we can identify its potential weaknesses, which can be valuable for potential refinements and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助雾里看花采纳,获得10
刚刚
1秒前
红芍完成签到,获得积分10
1秒前
zz发布了新的文献求助10
1秒前
1秒前
广州队发布了新的文献求助10
3秒前
拼搏的璇完成签到 ,获得积分10
3秒前
酷波er应助务实思烟采纳,获得10
3秒前
3秒前
shuoshuo发布了新的文献求助10
3秒前
科研通AI6应助晚风摇曳采纳,获得10
3秒前
bluekids完成签到,获得积分10
4秒前
4秒前
脑洞疼应助可爱花瓣采纳,获得10
6秒前
Akim应助科研虫儿采纳,获得10
6秒前
危机的煎蛋完成签到 ,获得积分10
7秒前
imchenyin完成签到,获得积分10
7秒前
浮游应助boyue采纳,获得10
8秒前
Hello应助boyue采纳,获得10
8秒前
Sven完成签到,获得积分10
8秒前
8秒前
浮游应助饱满的铅笔采纳,获得10
9秒前
9秒前
王大纯发布了新的文献求助10
9秒前
10秒前
小青椒应助xdd采纳,获得150
10秒前
zhouxuan发布了新的文献求助10
10秒前
10秒前
小月完成签到,获得积分10
11秒前
laa发布了新的文献求助10
11秒前
wait发布了新的文献求助200
12秒前
12秒前
绵羊发布了新的文献求助10
12秒前
13秒前
13秒前
Lily完成签到,获得积分10
13秒前
睡洋洋完成签到,获得积分10
13秒前
13秒前
14秒前
gb完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915