Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene

超导电性 双层石墨烯 凝聚态物理 双层 兴奋剂 石墨烯 电子 材料科学 物理 纳米技术 化学 量子力学 生物化学
作者
Chushan Li,Fan Xu,Bohao Li,Jiayi Li,Guoan Li,Kenji Watanabe,Takashi Taniguchi,Bingbing Tong,Jie Shen,Li Lü,Jinfeng Jia,Fengcheng Wu,Xiaoxue Liu,Tingxin Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.04479
摘要

Graphene-based, high quality two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity. Specifically, superconductivity has been observed in both electron-doped and hole-doped twisted graphene moire systems, whereas in crystalline graphene systems, superconductivity has so far only been observed in hole-doped rhombohedral trilayer and hole-doped Bernal bilayer graphene (BBG). Recently, enhanced superconductivity has been demonstrated in BBG due to the proximity with a monolayer WSe2. Here, we report the observation of superconductivity and a series of flavor-symmetry-breaking phases in both electron- and hole-doped BBG/WSe2 device by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when applied electric fields drive BBG electron or hole wavefunctions toward the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. We find the hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. In contrast, the electron-doped superconductivity obeys the Pauli limit, even though the proximity induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of novel superconductor devices based on BBG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
1秒前
Owen应助FceEar采纳,获得10
1秒前
1秒前
XPY完成签到,获得积分10
1秒前
1秒前
星黛露发布了新的文献求助10
2秒前
Owen应助灿烂千阳采纳,获得10
2秒前
2秒前
lalala应助复杂的水云采纳,获得10
2秒前
柚子发布了新的文献求助10
3秒前
烂漫亦云发布了新的文献求助10
3秒前
lalala应助甜甜的白枫采纳,获得10
3秒前
3秒前
4秒前
听筠完成签到,获得积分10
4秒前
4秒前
12完成签到,获得积分10
4秒前
荷西发布了新的文献求助200
6秒前
领导范儿应助金土豆采纳,获得10
6秒前
马62发布了新的文献求助10
7秒前
体贴擎发布了新的文献求助10
7秒前
Owen应助飞跃采纳,获得10
7秒前
慕青应助atonnng采纳,获得10
8秒前
阿玉完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
淡然的花卷完成签到,获得积分10
10秒前
ji完成签到,获得积分10
10秒前
慕青应助韦小艺采纳,获得10
11秒前
归尘发布了新的文献求助10
12秒前
13秒前
建设完成签到,获得积分10
13秒前
13秒前
guoer发布了新的文献求助10
13秒前
14秒前
14秒前
赘婿应助认真的刺猬采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339